首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hemoprotein horseradish peroxidase (HRP) catalyzes the polymerization of N‐isopropylacrylamide with an alkyl bromide initiator under conditions of activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) in the absence of any peroxide. This is a novel activity of HRP, which we propose to name ATRPase activity. Bromine‐terminated polymers with polydispersity indices (PDIs) as low as 1.44 are obtained. The polymerization follows first order kinetics, but the evolution of molecular weight and the PDI upon increasing conversion deviate from the results expected for an ATRP mechanism. Conversion, and PDI depend on the pH and on the concentration of the reducing agent, sodium ascorbate. HRP is stable during the polymerization and does not unfold or form conjugates.

  相似文献   


2.
One useful synthetic reaction missing from nature's toolbox is the direct hydrogenation of substrates using hydrogen. Instead nature uses cofactors like NADH to reduce organic substrates, which adds complexity and cost to these reductions. To create an enzyme that can directly reduce organic substrates with hydrogen, researchers have combined metal hydrogenation catalysts with proteins. One approach is an indirect link where a ligand is linked to a protein and the metal binds to the ligand. Another approach is direct linking of the metal to protein, but nonspecific binding of the metal limits this approach. Herein, we report a direct hydrogenation of olefins catalyzed by rhodium(I) bound to carbonic anhydrase (CA‐[Rh]). We minimized nonspecific binding of rhodium by replacing histidine residues on the protein surface using site‐directed mutagenesis or by chemically modifying the histidine residues. Hydrogenation catalyzed by CA‐[Rh] is slightly slower than for uncomplexed rhodium(I), but the protein environment induces stereoselectivity favoring cis‐ over trans‐stilbene by about 20:1. This enzyme is the first cofactor‐independent reductase that reduces organic molecules using hydrogen. This catalyst is a good starting point to create variants with tailored reactivity and selectivity. This strategy to insert transition metals in the active site of metalloenzymes opens opportunities to a wider range of enzyme‐catalyzed reactions.  相似文献   

3.
A highly living polymer with over 100 kg mol−1 molecular weight is very difficult to achieve by controlled radical polymerization since the unavoidable side reactions of irreversible radical termination and radical chain transfer to monomer reaction become significant. It is reported that over 500 kg mol−1 polystyrene with high livingness and low dispersity could be synthesized by a facile two‐stage reversible addition–fragmentation transfer emulsion polymerization. The monomer conversion reaches 90% within 10 h. High livingness of the product is ascribed to the extremely low initiator concentration and the chain transfer constant for monomer unexpectedly much lower than the well‐accepted values in the conventional radical polymerization. The two‐stage monomer feeding policy much decreases the dispersity of the product.

  相似文献   


4.
5.
6.
This Minireview details the current state‐of‐the‐art relating to (co)polymerizations mediated by well‐defined RhI‐ethynyl, vinyl, and aryl complexes. In particular, we focus on RhI species suitable for the (co)polymerization of phenylacetylenes, arylisocyanides, as well as propargyl esters and amides.  相似文献   

7.
A one‐pot procedure that straightforwardly combines reversible addition‐fragmentation chain transfer (RAFT) polymerization and end group transformation to remove the RAFT end groups is developed for the synthesis of well‐defined poly(meth)acrylates and polyacrylamides with inert end groups. This procedure only requires the addition of an amine at the end of the standard RAFT polymerization procedure, which avoids the separation and purification of the intermediate polymers and, hence, extremely reduces the working time and utilized amount of solvents. Upon addition of the amine, a thiol group is formed by aminolysis of the thiocarbonylthio group, which subsequently undergoes Michael addition with unreacted monomer leading to an inert thioether functionalized polymer.

  相似文献   


8.
H64D myoglobin mutant was reconstituted with two different types of synthetic hemes that have aromatic rings and a carboxylate‐based cluster attached to the terminus of one or both of the heme‐propionate moieties, thereby forming a “single‐winged cofactor” and “double‐winged cofactor,” respectively. The reconstituted mutant myoglobins have smaller Km values with respect to 2‐methoxyphenol oxidation activity relative to the parent mutant with native heme. This suggests that the attached moiety functions as a substrate‐binding domain. However, the kcat value of the mutant myoglobin with the double‐winged cofactor is much lower than that of the mutant with the native heme. In contrast, the mutant reconstituted with the single‐winged cofactor has a larger kcat value, thereby resulting in overall catalytic activity that is essentially equivalent to that of the native horseradish peroxidase. Enhanced peroxygenase activity was also observed for the mutant myoglobin with the single‐winged cofactor, thus indicating that introduction of an artificial substrate‐binding domain at only one of the heme propionates in the H64D mutant is the optimal engineering strategy for improving the peroxidase activity of myoglobin.  相似文献   

9.
Well‐defined diblock copolymers composed of poly(N‐octylbenzamide) and polystyrene were synthesized by reversible addition‐fragmentation chain transfer (RAFT) polymerization of styrene with a polyamide chain transfer agent (CTA) prepared via chain‐growth condensation polymerization. Synthesis of a dithioester‐type macro‐CTA possessing the polyamide segment as an activating group was unsatisfactory due to side reactions and incomplete introduction of the benzyl dithiocarbonyl unit. On the other hand, a dithiobenzoate‐CTA containing poly(N‐octylbenzamide) as a radical leaving group was easily synthesized, and the RAFT polymerization of styrene with this CTA afforded poly(N‐octylbenzamide)‐block‐polystyrene with controlled molecular weight and narrow polydispersity.

  相似文献   


10.
We report on the design of a polymeric prodrug of the anticancer agent paclitaxel (PTX) by a grafting‐from‐drug approach. A chain transfer agent for reversible addition fragmentation chain transfer (RAFT) polymerization was efficiently and regioselectively linked to the C2′ position of paclitaxel, which is crucial for its bioactivity. Subsequent RAFT polymerization of a hydrophilic monomer yielded well‐defined paclitaxel–polymer conjugates with high drug loading, water solubility, and stability. The versatility of this approach was further demonstrated by ω‐end post‐functionalization with a fluorescent tracer. In vitro experiments showed that these conjugates are readily taken up into endosomes where native PTX is efficiently cleaved off and then reaches its subcellular target. This was confirmed by the cytotoxicity profile of the conjugate, which matches those of commercial PTX formulations based on mere physical encapsulation.  相似文献   

11.
We present the first base‐free Fe‐catalyzed ester reduction applying molecular hydrogen. Without any additives, a variety of carboxylic acid esters and lactones were hydrogenated with high efficiency. Computations reveal an outer‐sphere mechanism involving simultaneous hydrogen transfer from the iron center and the ligand. This assumption is supported by NMR experiments.  相似文献   

12.
氯化血红素作为过氧化物模拟酶与HRP的比较研究   总被引:5,自引:0,他引:5  
用荧光光谱和紫外-可见吸收光谱研究了氯化血红素(hemin)催化过氧化氢与对羧基苯丙酸反应的动力学和反应产物,表明hemin同时具有模拟过氧化物酶、过氧化氢酶的活性,在反应过程中hemin自身被氧化分解。hemin催化反应的产物除与天然的辣根过氧化物酶(HRP)催化的产物相同(λex/λem=310nm/406nm)外,还有激发峰在258nm和300nm,发射峰在360nm的荧光物质。通过对产物光谱特性的比较,研究了hemin和HRP的特异性差异。该研究结果对进一步筛选和研究高特异性过氧化物模拟酶具有重要的指导意义。  相似文献   

13.
A facile route to synthesize well‐defined polybutadiene (PBd) DendriMacs is described. In a highly modified approach to that recently published for the synthesis of polystyrene DendriMacs, a G1 polybutadiene (PBd) DendriMac has been synthesized in three simple and high yielding steps. The first step involves the synthesis of a three‐arm PBd mikto arm star in which one arm has a terminal hydroxy group introduced by the use of a protected functionalized initiator. Following fractionation of the star, the hydroxy group is deprotected and converted into an alkyl bromide moiety before coupling the star to a trifunctional core (1,1,1‐tris(4‐hydroxylphenyl)ethane) by a Williamson coupling reaction catalyzed by cesium carbonate to yield a G1 PBd DendriMac.

  相似文献   


14.
Summary: Homopolymers and diblock copolymers that contain maltose or glucose residues have been prepared by ring‐opening metathesis polymerization of norbornene derivatives using a molybdenum–alkylidene initiator, Mo(CHCMe2Ph)(N‐2,6‐iPr2C6H3)(OtBu)2 ( A ). These polymerizations took place not only in a living fashion ( = < 1.2) but also with almost quantitative initiation. Two types of ruthenium initiators, (Cy3P)2RuCl2(CHPh) ( B ) and (IMesH2)(Cy3P)RuCl2(CHPh) ( C ), have also been used to compare initiator performance under the same conditions.

Structures for the polymers studied here.  相似文献   


15.
Redox‐cleavable mikto‐arm star polymers are prepared by an “arm‐first” approach involving copolymerization of a dimethacrylate mediated by a mixture of macroRAFT agents. Thus, RAFT copolymerization of the monomers BMA, DMAEMA, and OEGMA, with the disulfide dimethacrylate cross‐linker (DSDMA), bis(2‐methacryloyl)oxyethyl disulfide, mediated by a 1:1:1 mixture of three macroRAFT agents with markedly different properties [hydrophilic, poly[oligo(ethylene glycol) methacrylate]—P(OEGMA)8–9; cationizable, poly[2‐(dimethylamino)ethyl methacrylate]—P(DMAEMA); hydrophobic, poly(n‐butyl methacrylate)—P(BMA)] provides low dispersity mikto‐arm star polymers. Good control (Đ < 1.3) is observed for the target P(DMAEMA)/P(OEGMA)/P(BMA) (3:3:1) mikto‐arm star, a double hydrophilic P(DMAEMA)/P(OEGMA) (3:3) mikto‐arm star and a hydrophobic P(BMA) homo‐arm star. However, Đ for the target mikto‐arm stars increases with an increase in either the ratio [DSDMA]:[total macroRAFT] or the fraction of hydrophobic P(BMA) macroRAFT agent. The quaternized mikto‐arm star in dilute aqueous solution shows a monomodal particle size distribution and an average size of ≈145 nm.

  相似文献   


16.
The synthesis of well‐defined polymers in a low‐volume, combinatorial fashion has long been a goal in polymer chemistry. Here, we report the preparation of a wide range of highly controlled homo and block co‐polymers by Enz‐RAFT (enzyme‐assisted reversible addition–fragmentation chain transfer) polymerization in microtiter plates in the open atmosphere. The addition of 1 μm glucose oxidase (GOx) to water/solvent mixtures enables polymerization reactions to proceed in extremely low volumes (40 μL) and low radical concentrations. This procedure provides excellent control and high conversions across a range of monomer families and molecular weights, thus avoiding the need to purify for screening applications. This simple technique enables combinatorial polymer synthesis in microtiter plates on the benchtop without the need of highly specialized synthesizers and at much lower volumes than is currently possible by any other technique.  相似文献   

17.
Summary: For the convenient synthesis of well‐defined poly(N‐octyl‐p‐benzamide)s with low polydispersities, the polycondensation of methyl 4‐octylaminobenzoate ( 1 ) was investigated. Methyl ester monomer 1 polymerized with lithium 1,1,1,3,3,3‐hexamethyldisilazide (LHMDS) in the presence of an initiator in tetrahydrofuran at −10 °C. The highly pure polyamide with a defined molecular weight and a low polydispersity is obtained after simple treatment of the reaction mixture with aqueous NaOH solution, followed by evaporation.

The chain‐growth polycondensation of 4‐octylaminobenzoic acid methyl ester ( 1 ) with lithium 1,1,1,3,3,3‐hexamethyldisilazide (LHMDS) to yield poly(N‐octyl‐p‐benzamide).  相似文献   


18.
In propylene polymerization with MgCl2‐supported Ziegler‐Natta catalysts, it is known that the reduction of TiCl4 with alkylaluminum generates Ti3+ active species, and at the same time, leads to the growth of TiClx aggregates. In this study, the aggregation states of the Ti species were controlled by altering the Ti content in a TiCl3/MgCl2 model catalyst prepared from a TiCl3 · 3C5H5N complex. It is discovered that all the Ti species become isolated mononuclear with a highly aspecific feature below 0.1 wt.‐% of the Ti content, and that the isolated aspecific Ti species are more efficiently converted into highly isospecific ones by the addition of donors than active sites in aggregated Ti species.

  相似文献   


19.
Metal–organic frameworks (MOFs) have demonstrated great potentials in a variety of important applications. To enhance the inherent properties and endow materials with multifunctionality, the rational design and synthesis of MOFs with nanoscale porosity and hollow feature is highly desired and remains a great challenge. In this work, the formation of a series of well‐defined MOF (MOF‐5, FeII‐MOF‐5, FeIII‐MOF‐5) hollow nanocages by a facile solvothermal method, without any additional supporting template is reported. A surface‐energy‐driven mechanism may be responsible for the formation of hollow nanocages. The addition of pre‐synthesized poly(vinylpyrrolidone)‐ (PVP) capped noble‐metal nanoparticles into the synthetic system of MOF hollow nanocages yields the yolk–shell noble metal@MOF nanostructures. The present strategy to fabricate hollow and yolk–shell nanostructures is expected to open up exciting opportunities for developing a novel class of inorganic–organic hybrid functional nanomaterials.  相似文献   

20.
Many industrial catalysts contain isolated metal sites on the surface of oxide supports. Although such catalysts have been used in a broad range of processes for more than 40 years, there is often a very limited understanding about the structure of the catalytically active sites. This Review discusses how surface organometallic chemistry (SOMC) engineers surface sites with well‐defined structures and provides insight into the nature of the active sites of industrial catalysts; the Review focuses in particular on olefin production and conversion processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号