首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Comptes Rendus Chimie》2002,5(4):257-262
Precursor oxo-dienyl rhodium and iridium complexes 〚(η5-Cp*)M(η5-2-alkyl-oxodienyl)〛 〚BF4〛 (2a–c) were prepared according to literature procedure. Addition of 〚n-Bu4N〛 〚Δ-trisphat〛 (6) to a CD2Cl2 solution of these chiral derivatives has led to the NMR differentiation of the enantiomers. These results pave the way towards the preparation of enantiomerically pure o-quinone methide complexes.  相似文献   

2.
Protonation of Cp*Fe(dppe)H (1; Cp* = η5-C5Me5, dppe = Ph2PCH2CH2PPh2) by HBF4Et2O at –80 °C in diethylether affords the dihydrogen complex 〚Cp*Fe(dppe)(η2-H2)〛+BF4 (2+BF4) in 90% yield. Its PF6 salt analogue (2+PF6) is obtained in 94% yield by reaction between the 16-electron derivative 〚Cp*Fe(dppe)〛+PF6 (3+PF6) with H2 gas at –80 °C. The presence of a bound dihydrogen ligand in 2+ is indicated by a short T1 minimum values consistent with a H–H distances of 0.98(1) Å. For the partially deuterated derivative 2+–d1, the observed JHD value of 27.0 Hz confirms the presence of the coordinated dihydrogen ligand, which displays an H–H separation of 0.97(1) Å, in complete agreement with the distance calculated using the T1 static rotation model. Variable temperature NMR study shows the gradual, complete and irreversible transformation of the dihydrogen complex into its classical dihydride isomer trans-〚Cp*Fe(dppe)(H)2+ (4+). Thermal solid state reaction (–20 °C, 48 h) of 2+BF4 gives quantitatively 4+BF4, whereas 4+PF6 is obtained by simple contact of H2 with a solution of 3+PF6 in THF at room temperature. The crystal structure of 4+BF4 has been determined and shows a transoid arrangement of hydride ligands, consistent with the formulation of 4+ as an iron(IV) dihydride. DFT calculations on both dihydride and dihydrogen isomers of 〚Cp*Fe(dppe)H2+ indicate that 4+ is more stable than 2+ by 0.19 eV, while this energy difference is reversed in the case of 〚CpFe(dpe)H2+ (dpe = H2PCH2CH2PH2). The preference for the dihydride form in the case of 〚Cp*Fe(dppe)H2+ and of the dihydrogen one in the case of 〚CpFe(dpe)H2+ is due to the larger π-donor and σ-acceptor abilities of the 〚Cp*Fe(dppe)〛+ fragment, as compared to the 〚CpFe(dpe)〛+ unit.  相似文献   

3.
《Comptes Rendus Chimie》2002,5(5):373-378
Removal of the MeOH and hydrogen from the known cis,trans,cis-RhIII-dihydrido complexes 〚Rh(H)2(PR3)2(MeOH)2〛PF6 (R = Ph, p-tolyl) results in formation of the dimeric species 〚Rh2(PR3)4〛〚PF62; X-ray analysis shows the complexes to be 〚(Ph3P)Rh(μ-PhPPh2)〛2〚PF62 (and the p-tolyl analogue) containing bridged η6-arene moieties, while 1H and 13C NMR data in CD2Cl2 provide evidence for η4-coordination of the arene within the dimer. In more strongly coordinating solvents, formation of cis-〚Rh(PR3)2(solvent)2〛PF6 is observed, while formation of 〚(PR3)2Rh(η6-toluene)〛PF6 is evident in toluene solution, and this exists in equilibrium with the bis(solvent) species in the presence, for example, of acetone or MeOH. At ambient conditions, none of the arene-containing complexes effected catalytic H2-hydrogenation of toluene.  相似文献   

4.
《Comptes Rendus Chimie》2002,5(4):303-308
A novel tridentate hemilabile ligand 2 containing phosphine, imine and pyridyl donor groups has been prepared in analogy with the synthesis of the known related ligand 1. The reaction of 1 or 2 with 〚Rh(COE)2Cl〛2 resulted in the formation of the neutral complexes 〚Rh(L)Cl〛. By a method using 〚M(diene)Cl〛2 as starting material, cationic complexes of the type 〚M(diene)(L)〛X were also obtained (M = Rh, diene = NBD, L = 1, 2; M = Ir, diene = COD, L = 1; X = BF4, OTf). A comparative study of the catalytic activity of the new complexes towards the hydrogenation of various olefins has been reported. In particular, the catalysts of the type 〚Rh(L)Cl〛 are remarkably active when prepared in situ, especially for the reduction of hindered olefins.  相似文献   

5.
The synthesis and characterisation of 〚Fe(LI)32〚Fe(H2O)6〛(ClO4)6 (2), LI = 1,10-phenanthroline-5,6-dione, is described. The crystal structure 2 is an unprecedented example of two-dimensional non-covalent array made up of 〚Fe(LI)32+ species assembled by 〚Fe(H2O)62+ cations encapsulated in pseudo-hexagonal cages. These cages are sustained by 12 hydrogen bonds established between the coordinated water molecules and the dione groups of six alternating Δ, Λ chiral 〚Fe(LI)32+ moieties.  相似文献   

6.
Condensation of 3-amino-5-hydroxypyrazole 1 with triacetic acid lactone 2 in refluxed alcohols afforded 2-hydroxy-5,7-dimethylpyrazolo〚1,5-a〛pyrimidine 3 beside to 7-alkoxycarbonylmethyl-2-hydroxy-5- methylpyrazolo〚1,5-a〛pyrimidine 4. Action of hydrazine on compounds 4 yielded 7-hydrazinocarbonylmethyl-2-hydroxy-5-methylpyrazolo〚1,5-a〛pyrimidine 5. Condensation of o-phenylenediamines 6 with hydrazide 5 to melting reactants afforded 2-hydroxy-7-〚benzimidazol-2-yl〛methyl-5-methylpyrazolo〚1,5-a〛pyrimidines 7. Structures of the obtained products have been assigned by means of spectroscopic measurements.  相似文献   

7.
The bimetallic networks coordinated with oxalate bridges {〚MIIMIII(C2O4)3C+〛}n form an important family of molecular magnets. The role of the cation C+ is fundamental for the nature of the obtained network (bi- or tridimensional). Thus, tridimensional polymers can be obtained in optically active forms using monocationic resolved templates such as 〚Ru(bpy)2ppy〛+ 1 and 〚Ru(bpy)2Quo〛+ 2. These cations were synthesized and resolved. A 1H NMR technique based on the formation of diastereomeric salts obtained with optically active anion 〚ΔTrisphat〛 {Trisphat = tris(tetrachlorobenzenediolato)phosphate(V)} was used to measure the enantiomeric excesses. To cite this article: M. Brissard et al., C. R. Chimie 5 (2002) 53–58  相似文献   

8.
《Comptes Rendus Chimie》2002,5(5):425-430
Algorithms used for the assembly of metallosupramolecular constructs are simple and based upon well-established principles of coordination chemistry. The multinucleating ligand 3,6-bis(2-pyridyl)pyridazine forms a 〚2 × 2〛 grid with copper(I); the related ligand 3,6-bis(2-pyridyl)-1,2,4,5-tetrazine (dptz) is expected to behave in a similar manner with silver(I). However, instead of the expected grid, 〚Ag(dptz)2+ solution species are formed. In the solid state, dinuclear 〚Ag2(dptz)22+ and polymeric 〚{Ag(dptz-N,N’)(μ-dptz)}nn+ complexes have been structurally characterised.  相似文献   

9.
《Comptes Rendus Chimie》2002,5(6-7):517-523
Condensation of 4-hydroxy-6-methyl pyran-2-one 2 with 3-amino-1,2,4-triazole 1 in refluxing alcohol afforded 5-alkoxycarbonylmethyl-7-methyl-1,2,4-triazolo〚1,5-a〛pyrimidines and their isomers 5-alkoxycarbonylmethyl-7-methyl-1,2,4-triazolo〚4,3,-a〛pyrimidines 4. Reaction of hydrazine hydrate with compounds 4 and 5 yielded the corresponding hydrazid acids 6 and 7. Condensation of o-phenylenediamines 8 with esters 3(4) in refluxing xylol or with hydrazid acid 6(7) by melting reagents afforded 7(5)-〚benzimidazol-2-yl〛methyl-5(7)methyl-1,2,4-triazolo〚1,5-a〛(〚4,3-a〛)pyrimidines 9(10). The structures of the annealed compounds have been elucidated by their 1H, 13C NMR and Mass Spectroscopy data.  相似文献   

10.
The reaction of low-valent ruthenium complexes with 2,6-bis(imino)pyridine ligand, [η2-N3]Ru(η6-Ar) (1) or {[N3]Ru}2(μ-N2) (2) with amine hydrochlorides generates six-coordinate chlorohydro ruthenium (II) complexes with amine ligands, [N3]Ru(H)(Cl)(amine) (4). Either complex 1 or 2 activates amine hydrochlorides 3, and the amines coordinate to the ruthenium center to give complex 4. This is a convenient and useful synthetic approach to form ruthenium complexes with amine and hydride ligands using amine hydrochloride.  相似文献   

11.
The preparation of a new functionalized cyclopentadienyl ligand bearing a nitrile pendant substituent, (C5H4CMe2CH2CN)? is reported. The corresponding lithium salt of this ligand (1) was prepared by the reaction of in situ lithiated acetonitrile with 6,6-dimethylfulvene. The ligand was subsequently utilized for the synthesis of group 4 metal complexes [(η5–C5H4CMe2CH2CN)2MCl2] (M = Ti, 2; M = Zr, 3; M = Hf, 4), [(η5–C5H5) (η5–C5H4CMe2CH2CN)MCl2] (M = Ti, 7; M = Zr, 8), and [(η5-C5Me5) (η5 C5H4CMe2CH2CN)2ZrCl2] (9). Alternative route to 2 comprised the preparation of half-sandwich complex [(η5–C5H4CMe2CH2CN)TiCl3] (6). The prepared compounds were characterized by common spectroscopic methods and the solid state structures of complexes 2, 3, 4, 7, and 9 were determined by the single-crystal X-ray diffraction analysis. In addition, compound 7 was converted to the corresponding dimethyl derivative [(η5–C5H5) (η5–C5H4CMe2CH2CN)TiMe2] (10) and also treated with the chloride anion abstractor Li[B(C6F5)4] to generate the cationic complex with the coordinated nitrile group, as suggested by the NMR spectroscopy. A formation of yet another cationic complex was observed upon treating compound 10 with (Ph3C)[B(C6F5)4].  相似文献   

12.
The trihydrides (η5-C5Me5RuH3(PR3 = PMe3, FEt3, Pipr3, PCy3, PPh2Me, and PPh3) (2) are formed in the reaction of paramagnetic (η5C5Me5)RuCl2(PR3) (1) with NaBH4 in ethanol. The reaction of 1 with NaBH4, in THF yields intermediary tetrahydroborate complexes (η5-C5Me5)Ru(PR3)(BH4) (3), which are converted to the trihydrides 2 by treatment with ethanol. Irradiation of 2c and 2f in C6D6 solution with UV light causes H/D exchange reaction among the solvent, hydride ligands, and the coordinated phosphine.  相似文献   

13.
An efficient catalytic system containing [RuCl26-p-cymene)]2 and one P,N ligand, N-diphenylphosphino-2-aminopyridine (L1) was loaded in catalyzing the alkylation of ketones with primary alcohols for a diverse array of substrates. Other five P,N ligands based on pyridin-2-amine and pyrimidin-2-amine were also examined in this reaction to explore the influence of steric hindrance and electronic effects. Monitoring by 1H NMR and ESI-MS reveals a stable cationic L1-coordinated ruthenium hydride intermediate, identified as [Ru(η6-p-cymene)(κ2-L1)H]+. Organic intermediates consistent with a three-step dehydrogenation, alkylation and hydrogenation pathway were also observed. The final step in this reaction, the ruthenium-catalysed transfer hydrogenation reduction of α,β-unsaturated ketone with benzyl alcohol was performed separately.  相似文献   

14.
15.
Neutral half‐sandwich η6p ‐cymene ruthenium(II) complexes of general formula [Ru(η6p ‐cymene)Cl(L)] (HL = monobasic O, N bidendate benzoylhydrazone ligand) have been synthesized from the reaction of [Ru(η6p ‐cymene)(μ‐Cl)Cl]2 with acetophenone benzoylhydrazone ligands. All the complexes have been characterized using analytical and spectroscopic (Fourier transform infrared, UV–visible, 1H NMR, 13C NMR) techniques. The molecular structures of three of the complexes have been determined using single‐crystal X‐ray diffraction, indicating a pseudo‐octahedral geometry around the ruthenium(II) ion. All the ruthenium(II) arene complexes were explored as catalysts for transfer hydrogenation of a wide range of aromatic, cyclic and aliphatic ketones with 2‐propanol using 0.1 mol% catalyst loading, and conversions of up to 100% were obtained. Further, the influence of other variables on the transfer hydrogenation reaction, such as base, temperature, catalyst loading and substrate scope, was also investigated.  相似文献   

16.
The water soluble monobenzene complex of ruthenium, [Ru(η6-C6H6)(CH3CN)3](BF4)2 (1) is an effective catalyst or catalyst precursor for the hydrogenation of olefinic functions in benzene/H2O biphasic medium. The catalyst can be recycled by simple decantation. Complex 1 is capable of catalyzing H/D exchange reaction between H2 and D2O. A two-loop reaction mechanism for the catalytic hydrogenation reactions with 1 is postulated. In this mechanism, water acts as the base to assist the heterolytic hydrogen cleavage in one of the loops, but is not an active participant in the other.  相似文献   

17.
Hydrazine complexes [MCl(η6-p-cymene)(RNHNH2)L]BPh4 (16) [M = Ru, Os; R = H, Me, Ph; L = P(OEt)3, PPh(OEt)2, PPh2OEt] were prepared by allowing dichloro complexes MCl26-p-cymene)L to react with hydrazines RNHNH2 in the presence of NaBPh4. Treatment of ruthenium complexes [RuCl(η6-p-cymene)(RNHNH2)L]BPh4 with Pb(OAc)4 led to acetate complex [Ru(κ2–O2CCH3)(η6-p-cymene)L]BPh4 (7). Instead, the reaction of osmium derivatives [OsCl(η6-p-cymene)(CH3NHNH2)L]BPh4 with Pb(OAc)4 afforded the methyldiazenido complex [Os(CH3N2)(η6-p-cymene)L}]BPh4 (8). Treatment with HCl of this diazenido complex 8 led to the methyldiazene cation [OsCl(CH3NNH)(η6-p-cymene)L}]+ (9+). The complexes were characterised spectroscopically and by X-ray crystal structure determination of [OsCl(η6-p-cymene)(PhNHNH2){PPh(OEt)2}]BPh4 (6b) and [Ru(κ2–O2CCH3)(η6-p-cymene){PPh(OEt)2}]BPh4 (7b).  相似文献   

18.
The reactions between the phosphine-organoiron [CpFeII6-C6Me5CH2PPh2]+ PF6? (1) and [RhCl(η4-diolefin)(μ-Cl)]2 in CH2Cl2 at reflux give the new heterobinuclear air-stable crystalline complexes [CpFeII6-C6Me5CH2)P(Ph)2Rh(η4-diene)Cl]PF6,(D'*-diene=cyclooctadiene (COD): 65%, 2; trimethylfluorobenzobicyclo[2.2.2]octadiene (Me3TFB): 48%, 3). Complexes 2 and 3 have been studied by 1H, 13C and 31P NMR spectroscopy and they are carbonylated (CO, 1 atm). Cyclic voltammetry experiments with addition of MeOH show electron transfer FeIRhI → FeIIRh0, the presence of a catalytic wave FeI/FeII and the possible formation of Rh hydrides. Under normal conditions 2 is a catalyst for hydrogenation of cyclohexene, but it is less efficient than the known mononuclear Rh1 analogues.  相似文献   

19.
The ruthenium(II) complexes RuH2(CO)2(PnBu3)2, RuH2(CO)2(PPh3)2, and RuH2(PPh3)4 are catalytically active in the hydrogenation of organic substrates containing a NN, N(O)N or NO2 group. The reduction of the first two groups leads to hydrazine as intermediate and amine as the final product, while reducing a NO2 group the corresponding amine is selectively formed. A complete conversion was reached, depending on temperature, catalyst and substrate concentration. The catalysts are also active in the hydrogenolysis of an N-N group giving the corresponding amine with a 97.3% conversion using RuH2(PPh3)4 as catalyst. A first-order reaction rate with respect to substrate, catalyst or hydrogen pressure was detected in all cases. Finally, the activation parameters and the kinetic constants of these reactions were calculated. In the hydrogenation of azobenzene, the rate determining step involves an associative or a dissociative step depending on the catalyst employed while in the hydrogenation of all other substrates an associative rate determining step is always involved. A catalytic cycle is suggested for the hydrogenation of azobenzene, taking into account the intermediate complexes identified in the reaction medium.  相似文献   

20.
The addition of carbon disulfide to 3(5)-N-〚methyl (ethyl)-2-aminophenyl amino-5(3)-phenylpyrazole 3 (4) afforded 10-methyl (ethyl)-3-phenylpyrazolo〚4,3-c〛 〚1,5〛 benzodiazepine-4-thione 7 (8). These compounds reacted with alkyl halides and acetylhydrazide or benzoylhydrazide, to afford new heterocyclic systems: pyrazolo 〚4,3-c〛 triazolo〚4,3-a〛-1,5-benzodiazepines 15–18. Biological properties of compounds 8, 9, 16 and 17 have been evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号