首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
量子级联激光器是一种新型的红外相干光源。利用量子理论与带隙工程,量子级联激光器可实现3 μm到100 μm波长范围内的任意输出波长。由于大多数气体分子的特征光谱都集中在中红外波段,而中红外量子级联激光器具有功率高、线宽窄、扫描速度快等独特的优点,因此,基于量子级联激光器的红外光谱技术已成为气体检测技术的研究热点。尤其是,近年来室温激光器性能得到不断的完善,输出功率和电光转换效率得到了极大的提高,这在很大程度上推动了红外激光光谱技术的迅速发展。本文根据工作原理,分别介绍了基于直接吸收谱检测、相位调制光谱检测、光声调制光谱检测和法拉第旋光效应光谱检测的量子级联激光器红外光谱检测技术,并对其实现方法和应用情况进行了介绍。  相似文献   

3.
为了满足中红外一氧化碳检测中分布反馈量子级联激光器的驱动要求,设计并实现了一种专用型脉冲驱动电源.首先,研制了高稳定的供电系统和完善的保护系统,显著提高了驱动脉冲的质量并保证了电源工作的可靠性;其次,依据"多级隔离"的思想设计了电源各功能电路,很大程度上提高了驱动电源的抗干扰能力;同时,将深度电压负反馈与比例-积分-微分控制算法相结合,有效提高了输出电流的稳定度.利用该驱动电源对中科院半导体所研制的波长为4.76μm的分布反馈量子级联激光器做了驱动测试.实验结果表明,在长时间(200h)运行中,系统驱动电流的稳定度为2.5×10-5,线性度为0.004%,满足分布反馈量子级联激光器的驱动要求,为中红外一氧化碳的可靠检测提供了保障.  相似文献   

4.
A rationally mode-locked 10 GHz erbium fiber laser stabilized by a simple technique for extended time operation is described. The laser generates stable ~ 5 ps pulses that can be used in communications experiments. Back-to-back bit error rate (BER) measurements confirmed error-free operation for 6-8 hours, giving an error floor below 10 -14 . A receiver sensitivity of -19.7 dBm was achieved for BER of 10 -9 .  相似文献   

5.
对单丝直径为20μm,12×9阵列方形面阵的Ge-As-Te-Se组分光纤束进行了测试,并开展红外成像研究.利用5~11μm连续可调谐红外量子级联激光器作为光源,对光纤束损耗进行检测,传输损耗平均为1 dB/cm.设计并加工了基于像方远心成像的紧凑型物镜,总长13.6 mm,直径6 mm,最终实现了2 mm×2 mm视...  相似文献   

6.
The electrical and heat currents flowing through a quantum dot are calculated in the presence of a time‐modulated gate voltage with the help of the out‐of‐equilibrium Green function technique. From the first harmonics of the currents, we extract the electrical and thermoelectrical trans‐admittances and ac‐conductances. Next, by a careful comparison of the ac‐conductances with the finite‐frequency electrical and mixed electrical‐heat noises, we establish the fluctuation‐dissipation relations linking these quantities, which are thus generalized out‐of‐equilibrium for a quantum system. It is shown that the electrical ac‐conductance associated to the displacement current is directly linked to the electrical noise summed over reservoirs, whereas the relation between the thermoelectrical ac‐conductance and the mixed noise contains an additional term proportional to the energy step that the electrons must overcome when traveling through the junction. A numerical study reveals however that a fluctuation‐dissipation relation involving a single reservoir applies for both electrical and thermoelectrical ac‐conductances when the frequency dominates over the other characteristic energies.  相似文献   

7.
This paper presents a scheme for second harmonic generation (SHG) of an intense Cosh‐Gaussian (ChG) laser beam in thermal quantum plasmas. Moment theory approach in W.K.B approximation has been adopted in deriving the differential equation governing the propagation characteristics of the laser beam with distance of propagation. The effect of relativistic increase in electron mass on propagation dynamics of laser beam has been incorporated. Due to relativistic nonlinearity in the dielectric properties of the plasma, the laser beam gets self‐focused and produces density gradients in the transverse direction. The generated density gradients excite electron plasma wave (EPW) at pump frequency that interacts with the incident laser beam to produce its second harmonics. Numerical simulations have been carried out to investigate the effects of laser parameters on selffocusing of the laser beam and hence on the conversion efficiency of its second harmonics. Simulation results predict that within a specific range of decentered parameter the ChG laser beams show smaller divergence as they propagate and, thus, lead to enhanced conversion efficiency of second harmonics. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
Simultaneous two‐state lasing is a unique property of semiconductor quantum‐dot (QD) lasers. This not only changes steady‐state characteristics of the laser device but also its dynamic response to perturbations. In this paper we investigate the dynamic stability of QD lasers in an external optical injection setup. Compared to conventional single‐state laser devices, we find a strong suppression of dynamical instabilities in two‐state lasers. Furthermore, depending on the frequency and intensity of the injected light, pronounced areas of bistability between both lasing frequencies appear, which can be employed for fast optical switching in all‐optical photonic computing applications. These results emphasize the suitability of QD semiconductor lasers in future integrated optoelectronic systems where a high level of stability is required.  相似文献   

9.
In this paper, the effect of finite width on ground‐state properties of a spin‐polarized symmetric electron‐hole quantum bilayers (EHBL) system is investigated at zero temperature. The quantum self‐consistent mean‐field approximation of Singwi, Tosi, Land and Sjölander (qSTLS) is adopted to explore intra‐ and interlayer properties such as the pair‐correlation function, the static density susceptibility, the local‐field corrections and the ground‐state energy. Interestingly, we noticed that due to the inclusion of finite width, the critical density for the onset of Wigner crystal (WC) phase is now lowered as compared to the recent spin‐polarized EHBL system without finite width and unpolarized EHBL system with finite width. Further, spin‐polarization effect is seem to introduce a marked change in the ground‐state energy of EHBL system as compared to that of unpolarized system. Results of ground‐state energy are also compared with the recent EHBL system without finite width (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
11.
Metamaterials made of periodic collections of dielectric nanorods are considered theoretically. When quantum resonators are embedded within the nanorods, one obtains a quantum metamaterial, whose electromagnetic properties depend upon the state of the quantum resonators. The theoretical model predicts that when the resonators are pumped and reach the inversion regime, the quantum metamaterial exhibits an all‐optical switchable conduction band. The phenomenon can be described by considering the pole stucture of the scattering matrix of the metamaterial.  相似文献   

12.
13.
14.
The increasing level of experimental control over atomic and optical systems gained in recent years has paved the way for the exploration of new physical regimes in quantum optics and atomic physics, characterised by the appearance of quantum many‐body phenomena, originally encountered only in condensed‐matter physics, and the possibility of experimentally accessing them in a more controlled manner. In this review article we survey recent theoretical studies concerning the use of cavity quantum electrodynamics to create quantum many‐body systems. Based on recent experimental progress in the fabrication of arrays of interacting micro‐cavities and on their coupling to atomic‐like structures in several different physical architectures, we review proposals on the realisation of paradigmatic many‐body models in such systems, such as the Bose‐Hubbard and the anisotropic Heisenberg models. Such arrays of coupled cavities offer interesting properties as simulators of quantum many‐body physics, including the full addressability of individual sites and the accessibility of inhomogeneous models.  相似文献   

15.
In this paper, we propose a scheme to protect quantum state by utilizing the time‐dependent decoherence‐free subspaces (TDFSs) theory without the rotating‐wave approximation (RWA). A coherent control is designed to drive the quantum system into the TDFSs, moreover, the singularities of the designed coherent control can be avoided by appropriately choosing the control parameters. From an experimental view point, the influences of variations of the control parameters and the imperfect initial state are discussed in detail. Numerical simulations confirm that the scheme can protect the quantum information from both the environmental decoherence and the control errors. In addition, by comparing with the scheme employing RWA, we show that the weak coherent control field is not suitable to create the TDFS, the counter‐rotating terms in the strong coherent control are helpful to protect the quantum information.  相似文献   

16.
The outcoupling of a Bose‐Einstein condensate through an optical lattice provides an interesting scenario to study quantum transport phenomena or the analog Hawking effect as the system can reach a quasi‐stationary black‐hole configuration. We devote this work to characterize the quantum transport properties of quasi‐particles on top of this black‐hole configuration by computing the corresponding scattering matrix. We find that most of the features can be understood in terms of the usual Schrödinger scattering. In particular, a transmission band appears in the spectrum, with the normal‐normal transmission dominating over the anomalous‐normal one. We show that this picture still holds in a realistic experimental situation where the actual Gaussian envelope of the optical lattice is considered. A peaked resonant structure is displayed near the upper end of the transmission band, which suggests that the proposed setup is a good candidate to provide a clear signal of spontaneous Hawking radiation.  相似文献   

17.
18.
Hollow Wave Guides were evaluated as a beam delivery system for the Free Electron Laser (FEL) at Vanderbilt in preparation of surgical applications. They can transmit the mid-infrared wavelength range (2µm - 9µm) and tolerate the high peak intensity (>1014 W/m2) in the micropulse of the FEL. Changes in the temporal and spatial beam characteristics induced by the transmission through 1.5 meter Hollow Wave Guides with bore radii of 250 µm and 530 µm were investigated. Temporal broadening of the micro pulses was studied using intensity autocorrelation measurements and beam profile measurements were performed with a pyroelectric camera. Results demonstrate significant pulse broadening and development of higher order modes induced by sub-optimal coupling of the beam into the Hollow Wave Guide. Bending of the Hollow Wave Guide induced additional losses and reduced propagation of higher modes responsible for broadening the pulse. Calculations with a geometrical ray model support the findings on pulse broadening. Optimal coupling conditions are extremely critical for maximal transmission performance of the Hollow Wave Guide. Design consequences for a FEL delivery system are discussed.  相似文献   

19.
20.
Fundamental physical phenomena in metals irradiated by ultrashort laser pulses with absorbed fluences higher than few tens of mJ/cm2 are investigated. For those fluences, laser‐produced electron distribution function relaxes to equilibrium Fermi distribution with electron temperature Te within a short time of 10‐100 fs. Because the electron subsystem has Te highly exceeding much the ion subsystem temperature Ti the well‐known twotemperature hydrodynamic model (2T‐HD) is used to evaluate heat propagation associated with hot conductive electron diffusion and electron‐ion energy exchange. The model coefficients of electron heat conductivity κ (?, Te, Ti) and electron‐ion coupling parameter α (?, Te) together with 2T equation of state E (?, Te, Ti) and P (?, Te, Ti) are calculated. Modeling with 2T‐HD code shows transition of electron heat wave from supersonic to subsonic regime of prop‐agation. At the moment of transition the heat wave emits a compression wave moving into the bulk of met al. Nonlinear evolution of the compression wave after its separation from the subsonic heat wave till spallation of rear‐side layer of a film is traced in both 2T‐HD modeling and molecular dynamics (MD) simulation. For fluences above some threshold the nucleation of voids in frontal surface layer is initiated by strong tensile wave following the compression wave. If the absorbed fluence is ~30 % above the ablation threshold than void nucleation develops quickly to heavily foam the molten met al. Long‐term evolution of the metal foam including foam breaking and freezing is simulated. It is shown that surface nano‐structures observed in experiments are produced by very fast cooling of surface molten layer followed by recrystallization of supercooled liquid in disintegrating foam having complex geometry. Characteristic lengths of such surface nanostructures, including frozen pikes and bubbles, are of the order of thickness of molten layer formed right after laser irradiation. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号