共查询到20条相似文献,搜索用时 0 毫秒
1.
The optical nonlinearities of an InGaN/GaN multiple quantum well (MQW) and a GaN film were experimentally investigated by using femtosecond Z-scan method in this paper. It was observed that the InGaN/GaN MQW displays a nonlinear saturable absorption (SA) effect and the nonlinear absorption coefficient β was determined to be ; and the GaN film shows a reverse saturable absorption (RSA) effect and the β is . It is also found that the absorption cross sections and quantum confinement effect (QCE) give an influence on the SA of the InGaN/GaN MQW structure. 相似文献
2.
3.
Electrical characteristics of In0.05 Ga0.95N/Al0.07Ga0.9aN and In0.05 Ga0.95N/GaN multiple quantum well (MQW) ultraviolet light-emltting diodes (UV-LEDs) at 400hm wavelength are measured. It is found that for InGaN/AlGaN MQW LEDs, both ideality factor and parallel resistance are similar to those of InGaN/GaN MQW LEDs, while series resistance is two times larger. It is suggested that the Al0.07Ga0.93N barrier layer did not change crystal quality and electrical characteristic of p-n junction either, but brought larger series resistance. As a result, InGaN/AlGaN MQW LEDs suffer more serious thermal dissipation problem although they show higher light output efficiency. 相似文献
4.
5.
Carrier transport via the V-shaped pits(V-pits) in InGaN/GaN multiple-quantum-well(MQW) solar cells is numerically investigated. By simulations, it is found that the V-pits can act as effective escape paths for the photo-generated carriers. Due to the thin barrier thickness and low indium composition of the MQW on V-pit sidewall, the carriers entered the sidewall QWs can easily escape and contribute to the photocurrent. This forms a parallel escape route for the carries generated in the flat quantum wells. As the barrier thickness of the flat MQW increases, more carriers would transport via the V-pits. Furthermore, it is found that the V-pits may reduce the recombination losses of carriers due to their screening effect to the dislocations. These discoveries are not only helpful for understanding the carrier transport mechanism in the InGaN/GaN MQW, but also important in design of the structure of solar cells. 相似文献
6.
7.
The characterization and fabrication of Schottky barrier photodiodes based on InGaN/GaN multiple-quantum well structures in the active region are presented. These devices allow photodetection based on nitrides from the visible (VIS) to the ultraviolet (UV) ranges to be covered, and offer an alternative to InGaN bulk devices. Indium concentrations in the 8 to 14% range have been used. It has also been shown that in these devices the envelope average electric field in the depletion region can be tailored as a result of the huge polarization fields present in wells and barriers. As a consequence, two different device operation modes, as a function of voltage bias, are possible. By proper well and barrier design, charge accumulation can be produced at the boundaries of the active region and a large responsivity for photons with energies close to the barrier bandgap is found. Photodetectors show a rather sharp detection edge with a contrast of more than four orders of magnitude, reaching peak responsivities in the 0.1–1.0 A/W range. Self-consistent simulations and a discussion on the electric fields in the active regions are also presented. 相似文献
8.
E.V. Lutsenko A.V. Danilchyk N.P. Tarasuk V.N. Pavlovskii A.L. Gurskii G.P. Yablonskii L. Rahimzadeh Khoshroo H. Kalisch R.H. Jansen Y. Dikme B. Schineller M. Heuken 《Superlattices and Microstructures》2007,41(5-6):400
Chemical etching and removal of the silicon substrate was used for the creation of optically pumped lift-off InGaN/GaN multiple quantum well (MQW) lasers from heterostructures grown on silicon substrate by MOVPE. Luminescence and laser properties of these heterostructures on silicon substrates as well as those of MQWs lifted-off from their substrate by chemical etching were investigated. The lowest value of the lasing threshold of the lift-off lasers at room temperature was about 205 kW/cm2 for a laser wavelength of 463 nm and about 360 kW/cm2 for a wavelength of 475 nm. It was shown theoretically that the reduction of internal losses, caused by the absence of absorption in the substrate (resulting from its removal) is most significant for the high order modes having lower values of mirror losses and can lead to a 50% reduction of the threshold (or material gain in InGaN necessary to achieve the threshold). 相似文献
9.
Photoluminescence (PL), photoluminescence excitation (PLE) and selective excitation (SE-PL) studies were performed in an attempt to identify the origin of the emission bands in a pseudomorphic In0.05Ga0.95N/GaN film. Besides the InGaN near-band-edge PL emission centred at 3.25 eV an additional blue band centred at 2.74 eV was observed. The lower energy PL peak is characterized by an energy separation between absorption and emission–the Stokes’ shift–(500 meV) much larger than expected. A systematic PLE and selective excitation analysis has shown that the PL peak at 2.74 eV is related to an absorption band observed below the InGaN band gap. We propose the blue emission and its related absorption band are associated to defect levels, which can be formed inside either the InGaN or GaN band gap. 相似文献
10.
研究了具有InGaN/GaN超晶格(SL)插入结构的绿光InGaN/GaN多量子阱(MQW)的发光特性。结构测试表明,SL插入结构并没有引起MQW中平均In组份的增加,而是改变了In组份的分布,形成了高In组份的量子点和低In组份量子阱。其电致发光(EL)谱和光致发光(PL)谱均出现了双发光峰。我们认为这两个 峰分别来自于量子点和量子阱,且存在着载流子从阱向点转移的输运机制。最后变温PL积分强度的Arrhenius 拟合表明,SL插入结构并没有在MQW中引入新的缺陷,使其发光效率下降。 相似文献
11.
Optical properties of type-II InGaN/GaNAs QW light-emitting diodes are investigated by using the multiband effective mass theory. These results are compared with those of conventional InGaN/GaN QW structures. The type-II InGaN/GaNAs/GaN QW structure shows much larger spontaneous emission and optical gain than that of a conventional QW structure. This can be explained by the fact that, in the case of the type-II QW structure, the effective well width is greatly reduced. A type-II QW structure shows that the peak position at a high carrier density is similar to that (530 nm) at a low carrier density. On the other hand, in the case of a conventional QW structure, the peak position is largely blueshifted at a high carrier density. 相似文献
12.
为了解决在单晶硅衬底上生长的InGaN/GaN多层量子阱发光二极管器件发光效率显著降低的问题,使用周期性δ型Si掺杂的GaN取代Si均匀掺杂的GaN作为n型层释放多层界面间的张应力。采用稳态荧光谱及时间分辨荧光谱测量,提取并分析了使用该方案前后的多层量子阱中辐射/非辐射复合速率随温度(10~300 K)的变化规律。实验结果表明引入δ-Si掺杂的n-GaN层后,非辐射复合平均激活能由(18±3)meV升高到(38±10)meV,对应非辐射复合速率随温度升高而上升的趋势变缓,室温下非辐射复合速率下降,体系中与阱宽涨落有关的浅能级复合中心浓度减小,PL峰位由531 nm左右红移至579 nm左右,样品PL效率随温度的衰减受到抑制。使用周期性δ型Si掺杂的GaN取代Si均匀掺杂的GaN作为生长在Si衬底上的InGaN/GaN多层量子阱LED器件n型层,由于应力释放,降低了多层量子阱与n-GaN界面、InGaN/GaN界面的缺陷密度,使得器件性能得到了改善。 相似文献
13.
Li-Wen Cheng Yang Sheng Chang-Sheng Xia Wei Lu Michel Lestrade Zhan-Ming Li 《Optical and Quantum Electronics》2011,42(11-13):739-745
In this paper, we introduce a full 3D simulation for light power distribution of an InGaN/GaN MQW LED with a textured surface. Device simulation was performed with the APSYS software to get power distribution of light sources inside the LED. Based on this, ray tracing simulation was carried out to get light power distribution outside the LED. During the process of ray tracing, the textured surface was treated as a special material interface whose reflectivity, transmittance and refraction angle are obtained with a Finite-Difference Time-Domain (FDTD) method instead of using the usual Fresnel formulas for normal material interfaces. By comparing the ray tracing results with and without the textured surface, we found that the textured surface yields a smoother transmitted power distribution and greatly improved power extraction efficiency, which are comparable to experiment. These effects may be further improved by optimizing the texture geometry. 相似文献
14.
Optical and electrical properties of InGaN/GaN multiple quantum wells (MQWs) light emitting diodes (LEDs) annealed in pure O2 ambient (500 °C) and pure N2 ambient (800 °C) were systematically investigated. The temperature-dependent photoluminescence measurements showed that high-temperature thermal annealing in N2 ambient can induce indium clusters in InGaN MQWs. Although the deep traps induced by indium clusters can act as localized centers for carriers, there are many more dislocations out of the trap centers due to high-temperature annealing. As a result, the radiative efficiency of the sample annealed in N2 ambient was lower than that annealed in O2 ambient at room temperature. Electrical measurements demonstrated that the LEDs annealed in O2 ambient were featured by a lower forward voltage and there was an increase of ~41% in wall-plug efficiency at 20 mA in comparison with the LEDs annealed in N2 ambient. It is thus concluded that activation of the Mg-doped p-GaN layer should be carried out at a low-temperature O2 ambient so as to obtain LEDs with better performance. 相似文献
15.
Haddou EL Ghazi Anouar Jorio Izeddine Zorkani Mohamed Ouazzani-Jamil 《Optics Communications》2008,281(12):3314-3319
Electroluminescence (EL) properties of InxGa1−xN/AlyGa1−yN/GaN/SiC diode were studied. The spectral range for which EL spectra were recorded is 1–3.5 eV. Room temperature EL was obtained for forward bias (3.18 V, 220 μA) at 446.067 nm (blue luminescence band), 606.98 nm (yellow luminescence band) and 893.84 nm (Infrared luminescence band). The EL temperature dependence shows that, BL band is mostly given by e–h recombination corresponding to indium composition equal to 0.17 ± 0.01 and 0.14 ± 0.02 obtained theoretically and experimentally, respectively. The yellow band is generally weak and absent at low temperature. The IRL band is more consistent with the DAP recombination and could be explained by the thermal activation of Mg states. The luminescence bands shift to lower energies is due probably to the larger potential fluctuations effect. 相似文献
16.
The advantages of a GaN–AlGaN–InGaN last quantum barrier(LQB) in an InGaN-based blue light-emitting diode are analyzed via numerical simulation. We found an improved light output power, lower current leakage, higher recombination rate, and less efficiency droop compared with conventional GaN LQBs. These improvements in the electrical and optical characteristics are attributed mainly to the specially designed GaN–AlGaN–InGaN LQB, which enhances electron confinement and improves hole injection efficiency. 相似文献
17.
围绕高性能GaN基垂直腔面发射激光器(VCSELs),设计了两种具有不同光电耦合强度的InGaN/GaN量子阱(QWs)样品,研究了它们的光学性质。样品A在腔模的两个波腹处各放置两个InGaN耦合量子阱,而样品B在腔模的一个波腹处放置5个InGaN耦合量子阱。计算表明样品A具有较大的相对光限制因子1.79,而样品B为1.47。光学测试发现样品A有着更高的内量子效率(IQE)和更高的辐射复合效率。使用两种样品制作了光泵VCSEL结构,在光激发下实现激射,其中基于样品A的VCSEL有着更低的激射阈值。结果表明有源区结构会显著影响量子阱与光场的耦合作用、外延片的内量子效率、辐射复合寿命和VCSEL激射阈值,同时也说明样品A的有源区结构更有利于制作低阈值的VCSEL器件。 相似文献
18.
运用电致发光(EL)和光致发光(PL)实验,分析了图形化蓝宝石衬底(PSSLEDs)和常规平面蓝宝石衬底(C-LEDs)InGaN/GaN多量子阱发光二极管的光谱特性。对比EL谱,发现PSSLEDs拥有更强的光功率和更窄的半峰宽(FWHM),说明PSSLEDs具有较高的晶体质量。其次,PSSLEDs的EL谱半峰宽随电流增加出现了更快的展宽,而这两种LED样品的PL谱半峰宽随激光功率增加呈现了基本相同的展宽变化,说明在相同电流下,PSSLEDs量子阱中载流子浓度更高,能带填充效应更强。另外,随着电流的增加,PSSLEDs和C-LEDs的峰值波长都发生蓝移,且前者的蓝移程度较小,结合半峰宽的对比分析,说明PSSLEDs量子阱中的极化电场较小。最后,对比了PSSLEDs和C-LEDs的外量子效率随电流的变化,发现PSSLEDs拥有更严重的efficiency droop,说明量子阱中极化电场不是导致efficiency droop的主要原因。 相似文献
19.
Mee-Yi Ryu Gyu Gwang Shim Phil Won Yu Eunsoon Oh Chulsoo Sone Okhyun Nam Yongjo Park 《Solid State Communications》2001,120(12):509-514
The optical properties and recombination kinetics of the InGaN/GaN double quantum well (DQW) structures with different well thickness (Lw) have been studied by means of photoluminescence (PL), time-resolved PL, and cathodoluminescence (CL) measurements. With increasing quantum well thickness up to 4 nm, the PL emission energy decreases and the blueshift of the PL emission energy increases with increasing excitation density. On the other hand, the PL emission energy of the DQWs with Lw=16 nm is higher than that of the DQWs with Lw=4 nm, and is independent of the excitation density. With increasing Lw from 1 to 4 nm, the PL decay times increase. In contrast, the decay times of 16 nm DQWs are faster than those of 4 nm DQWs. These different results for 16 nm DQWs such as the blueshift of the emission energy, the decrease of the excitation density dependence, and the increase of recombination rate can be ascribed to the relaxation of the piezoelectric field. We also observed the inhomegeneity in the CL spectra of the DQWs with Lw=1 nm on 1 μm scale. 相似文献
20.
The effect of low-energy electron-beam (e-beam) irradiation on the InGaN-related cathodoluminescence in multiple quantum well (MQW) InGaN/GaN light-emitting diode (LED) structures has been studied. It is shown that the e-beam exposure leads to an increase of emission intensity and to a formation of new blue-shifted emission bands. The changes observed were explained by the enhancement of In diffusion stimulated by excess carrier recombination. 相似文献