首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The crystalline isotypic solvates Rb4Sn4·2NH3, Cs4Sn4·2NH3, and Rb4Pb4·2NH3 have been synthesized using the direct reduction of elemental tin or tetraphenyltin, respectively, with heavier alkali metals or the dissolution of the binary phase RbPb in liquid ammonia. These compounds contain the cluster ions [Sn4]4– or [Pb4]4– respectively. This is the first time that[Tt4]4– ions (Tt = tetrels) are detected as result of a solution reaction. The accommodation of the ammonia molecules, which build up ion‐dipole interactions to alkali metal cations, requires some modifications of the crystal structures compared to the binary phases RbSn, CsSn, and RbPb. The tetrahedral [Tt4]4– anions have a slightly lower coordination by Rb+ or Cs+ cations and, furthermore, the intercluster distances show a remarkable increase.  相似文献   

2.
An organic–inorganic hybrid compound [(CH3)2NH2]2ZnBr4 has been prepared at room temperature under the slow evaporation method. Its structure was solved at 150 K using the single-crystal X-ray diffraction method. [(CH3)2NH2]2ZnBr4 crystallizes in the monoclinic system – a = 8.5512 (12) Å, b = 11.825 (2) Å, c = 13.499 (2) Å, β = 90.358 (6)°, V = 1365 (4) Å3, and Z = 4, space group P21/n. In the structure of [(CH3)2NH2]2ZnBr4, tetrabromozincate anions are connected to organic cations through N–H⋯ Br hydrogen bonds. Differential scanning calorimetry (DSC) measurements indicate that [(CH3)2NH2]2ZnBr4 undergoes four phase transitions at T1 = 281 K, T2 = 340 K, T3 = 377 K, and T4 = 408 K. Meanwhile, several studies including DSC measurements and variable-temperature structural analyses were performed to reveal the structural phase transition at T = 281 K in [(CH3)2NH2]2ZnBr4. Conductivity and dielectric study as a function of temperature (378 < T [K] < 423) and frequency (10−1 < f [Hz] < 106) were investigated. Analysis of equivalent circuit, alternating current conductivity, and dielectric studies confirmed the phase transition at T4. Conduction takes place by correlated barrier hopping in each phase.  相似文献   

3.
The title room‐temperature phase of (NH4)2(PO3F) is orthorhombic (Pna21) and is related to the β‐K2SO4 structure family. The title structure consists of ammonium cations, NH4+, and fluoro­phosphate anions, (PO3F)2?. These ions are connected by N—H?O hydrogen bonds. Two‐centre N—­H?F hydrogen bonds are not present in the structure. Phase transitions were detected at 251±2 and 274±2 K during cooling and heating, respectively.  相似文献   

4.
The crystal structure of Cs0.86(NH4)1.14SO4·Te(OH)6 is determined by X-ray diffraction analysis. The space group is P21/c with , , , β=106.65(3)° and Z=4 at 293 K. The structure is refined to R=2.9%. The distribution of atoms can be described as isolated TeO6 octahedra and SO4 tetrahedra. The Cs+ and NH4+ cations, occupying the same positions, are located between these polyhedra. The main feature of this structure is the coexistence of two types of anions in the same crystal related by network hydrogen bonds.The mixed solid solution cesium ammonium sulphate tellurate exhibits two phase transitions at 470 and 500 K. These transitions, detected by differential scanning calorimetric, are analyzed by dielectric measurements using the impedance and modulus spectroscopy techniques.  相似文献   

5.
We present three Mg–formate frameworks, incorporating three different ammoniums: [NH4][Mg(HCOO)3] ( 1 ), [CH3CH2NH3][Mg(HCOO)3] ( 2 ) and [NH3(CH2)4NH3][Mg2(HCOO)6] ( 3 ). They display structural phase transitions accompanied by prominent dielectric anomalies and anisotropic and negative thermal expansion. The temperature‐dependent structures, covering the whole temperature region in which the phase transitions occur, reveal detailed structural changes, and structure–property relationships are established. Compound 1 is a chiral Mg–formate framework with the NH4+ cations located in the channels. Above 255 K, the NH4+ cation vibrates quickly between two positions of shallow energy minima. Below 255 K, the cations undergo two steps of freezing of their vibrations, caused by the different inner profiles of the channels, producing non‐compensated antipolarization. These lead to significant negative thermal expansion and a relaxor‐like dielectric response. In perovskite 2 , the orthorhombic phase below 374 K possesses ordered CH3CH2NH3+ cations in the cubic cavities of the Mg–formate framework. Above 374 K, the structure becomes trigonal, with trigonally disordered cations, and above 426 K, another phase transition occurs and the cation changes to a two‐fold disordered state. The two transitions are accompanied by prominent dielectric anomalies and negative and positive thermal expansion, contributing to the large regulation of the framework coupled the order–disorder transition of CH3CH2NH3+. For niccolite 3 , the gradually enhanced flipping movement of the middle ethylene of [NH3(CH2)4NH3]2+ in the elongated framework cavity finally leads to the phase transition with a critical temperature of 412 K, and the trigonally disordered cations and relevant framework change, providing the basis for the very strong dielectric dispersion, high dielectric constant (comparable to inorganic oxides), and large negative thermal expansion. The spontaneous polarizations for the low‐temperature polar phases are 1.15, 3.43 and 1.51 μC cm?2 for 1 , 2 and 3 , respectively, as estimated by the shifts of the cations related to the anionic frameworks. Thermal and variable‐temperature powder X‐ray diffraction studies confirm the phase transitions, and the materials are all found to be thermally stable up to 470 K.  相似文献   

6.
The crystal structures of isostructural mixed-ligand fluorosulfate complex compounds of indium(III) M2[InF3(SO4)H2O] (M = K, NH4), formed of K+ cations, NH4 + respectively, and complex [InF3(SO4)H2O]2– anions are determined. In the complex anion, the indium atom surrounded by three F atoms, the oxygen atom of the coordinated H2O molecule, and two oxygen atoms of the bridging sulfate group forms a slightly distorted octahedron (CN 6). Via alternating bridging SO4 groups, the polyhedra of In(III) atoms are arranged in polymer chains. The O–H???F hydrogen bonds organize the chains in a three-dimensional network. The K+ and NH4 + cations are located in the structure framework and additionally strengthen it.  相似文献   

7.
A direct band gap 2D corrugated layer lead chloride hybrid, [(CH3)4N]4Pb3Cl10 ( 1 ), shows analogous topology to the {Mg3F104−} layer in Cs4Mg3F10, and with the (CH3)4N+ cations locating in the inorganic layer voids and between the interlayers. Two reversible structural phase transitions occur in 1 at 225/210 K and 328/325 K upon heating/cooling, respectively. On going from the low- to intermediate-temperature phase, the space group changes from P21/c to Cmca, and the crystallographic axis perpendicular to the layers is doubled with the order–disorder transformation of (CH3)4N + cations between the interlayers. The intermediate- and high-temperature phases are isomorphic with similar cell parameters and packing structure; their main difference concerns the disorder degree of the (CH3)4N + cations between the interlayers. The two-step structural phase transitions lead to dielectric anomalies around the corresponding Tc. Interestingly, 1 shows multiband emission, originating from the recombination of exciton and emission of defects. Moreover, 1 exhibits divergent thermochromic luminescent features around the Tc on the intermediate to low temperature transition.  相似文献   

8.
9.
Cs2[Zn(NH2)4] was synthesized under ammonothermal conditions (sc‐NH3, 523 K, 155 MPa) from CsNH2 and Zn. Growth of cm‐sized crystals succeeded upon application of a temperature gradient. The crystal structure is based on the motif of a hexagonal closed packing of [Zn(NH2)4]2– ions with occurrence of no significant hydrogen bridges according to distances and vibrational spectroscopy. Cs+ ions are located within octahedral and tetrahedral holes of the packing.  相似文献   

10.
A negative-to-positive transition of the temperature coefficients of thermal conductivity was found in the two-dimensional organic–inorganic layered complex (C4H9NH3)2CuCl4 ( C4CuCl4 ) over the three structural phase transitions in the range 176–218 K. The coefficients of the low-temperature phases (85–200 K, α and β phases) were negative, as is typical for insulating crystals, whereas those of the high-temperature phases (200–300 K, γ and δ phases) were positive, as is typical for glasses and liquids. Single-crystal X-ray structure analyses revealed that the tilted C4H9NH3+ chains in the α and β phases were fully outstretched in the δ phase, and the interlayer distances between the CuCl42− planes increased significantly. The γ phase was an intermediate phase that crystallized with an incommensurate structure, in which the CuCl42− sheets formed wave-like structures consisting of connected alternating regions of β-like and δ-like moieties. In the γ and δ phases, thermal fluctuations of the C4H9NH3+ chains were found in the electron density maps; however, powder X-ray diffraction (PXRD) data indicated that the thermal expansion of the C4H9NH3+ layers was restricted by the rigid CuCl42− layers. This situation was considered to induce glass-like thermal conducting properties in the material, such as a positive temperature coefficient. The mean free path of the phonons estimated by using the thermal conductivities and heat capacities was a function of T−1 in the range 85–200 K, as would be expected for crystals, whereas it was approximately constant in the range 200–300 K, which is typical of glasses. In addition, the existence of soft vibration modes in the two-dimensional perovskite CuCl42− sheets was revealed by analysis of the incommensurate crystal structure of the γ phase. These low-energy vibration modes were believed to induce the cooperative phase transitions, along with the thermal fluctuations and van der Waals interactions in the C4H9NH3+ layers.  相似文献   

11.
[Ag(NH3)2]ClO4: Crystal Structures, Phase Transition, and Vibrational Spectra [Ag(NH3)2](ClO4) is obtained from a solution of AgClO4 in conc. ammonia as colourless single crystals (orthorhombic, Pnmn, Z = 4, a = 795.2(1) pm, b = 617.7(1) pm, c = 1298.2(2) pm, Rall = 0.0494). The structure consists of linearly coordinated cations, [Ag(NH3)2]+, stacked in a staggered conformation and of tetrahedral (ClO4) anions. A first order phase transition was observed between 210 and 200 K and the crystal structure of the low‐temperature modification (monoclinic, P2/m, Z = 4, a = 789.9(5) pm, b = 604.1(5) pm, c = 1290.4(5) pm, β = 97.436(5)°, at 170 K, Rall = 0.0636) has also been solved. Spectroscopic investigations (IR/Raman) have been carried out and the assignment of the spectra is discussed.  相似文献   

12.
Cs2Ba(O3)4 · 2 NH3, the First Ionic Alkaline Earth Metal Ozonide Cs2Ba(O3)4 · 2 NH3 is the first ionic ozonide containing an alkaline earth metal cation. Its synthesis has been achieved via partial cation exchange of CsO3 dissolved in liquid ammonia. According to a single crystal X‐ray structure determination (Pnnm; a = 6.312(2) Å, b = 12.975(3) Å, c = 8.045(2) Å; Z = 2; R1 = 4.6%; 848 independent reflections) ozonide anions, cesium cations and ammonia molecules form a CsCl‐type arrangement, where Cs+ and NH3 occupy one half of the cation sites, each. Ba2+ is coordinated by four ozonide groups and two ammonia molecules. Because of a short hydrogen bond to one of the terminal oxygen atoms, the respective O–O‐distance in the ozonide ion is longer than the other. The shortest intermolecular O–O‐distance ever observed in ionic ozonides has been found in this compound, which can be taken as a first clue for the radical ozonide anion to dimerize like the isoelectronic SO2 does.  相似文献   

13.
Mixed salt Cs2SO4 · H6TeO6 (I) is synthesized and its structure and properties are studied by X-ray diffraction analysis, IR and Raman spectroscopies, impedance measurements, and differential thermal analysis. Compound I crystallizes in hexagonal system with unit cell parameters a = 7.455(1) Å, c = 33.303(7) Å, space group R3c, Z = 6. Its crystal structure consists of the H6TeO6 molecules and SO4 2- anions united by network of hydrogen bonds and Cs+ cations.  相似文献   

14.
The structure of ammonium hexafluoroarsenate, NH4AsF6, has been determined by X‐ray diffraction using a single crystal grown from saturated solution in anhydrous HF. NH4AsF6 crystallizes rhombohedral with the KOsF6 structure type, with a = 7.459(3) Å, c = 7.543(3) Å (at 200 K), Z = 3, space group (No. 148). No phase transition was observed in the 100 K–296 K temperature range. The structure is dominated by regular AsF6 octahedra and disordered NH4+ cations. Raman spectrum of a single crystal of NH4AsF6 shows the bands at 372 cm?1, 572 cm?1, 687 cm?1 (AsF6?) and at 3240 cm?1 and 3360 cm?1 (NH4+).  相似文献   

15.
Nuclear magnetic resonance (1H NMR and 19F NMR) measurements performed at 90-295 K, inelastic incoherent neutron scattering (IINS) spectra and neutron powder diffraction (NPD) patterns registered at 22-190 K, and X-ray powder diffraction (XRPD) measurements performed at 86-293 K, provided evidence that the crystal of [Zn(NH3)4](BF4)2 has four solid phases. The phase transitions occurring at: TC3=101 K, TC2=117 K and TC1=178 K, as were detected earlier by differential scanning calorimetry (DSC), were connected on one hand only with an insignificant change in the crystal structure and on the other hand with a drastic change in the speed of the anisotropic, uniaxial reorientational motions of the NH3 ligands and BF4 anions (at TC3 and at TC2) and with the dynamical orientational order-disorder process (“tumbling”) of tetrahedral [Zn(NH3)4]2+ and BF4 ions (at TC1). The crystal structure of [Zn(NH3)4](BF4)2 at room temperature was determined by XRPD as orthorhombic, space group Pnma (No. 62), a=10.523 Å, b=7.892 Å, c=13.354 Å and Z=4. Unfortunately, it was not possible to determine the structure of the intermediate and the low-temperature phase. However, we registered the change of the lattice parameters and unit cell volume as a function of temperature and we can observe only a small deviation from near linear dependence of these parameters upon temperature in the vicinity of the TC1 phase transition.  相似文献   

16.
Preparation and Characterization of Tetrabomoferrates(III) AFeBr4 with Monovalent Cations A ? Cs, Rb, Tl, NH4, K, Na, Li, Ag Tetrabromoferrates(III) AFeBr4 of the monovalent cations A ? Cs, Rb, Tl, NH4, Na, Ag, Li have been prepared in closed ampoules by reaction of the appropriate bromides with iron and an excessive amount of bromine. The dark red compounds were characterized by DTA, Raman spectroscopy and X-ray powder diffraction. Their crystal structures have been assigned to five structure types, containing FeBr4 anions. The coordination number runs from 12 (Cs+, Rb+) over 10 (NH4+) and 8 (K+), to 6 (Na+, Ag+, Li+). Lattice parameters for all compounds see “Inhaltsübersicht”. CsFeBr4 and RbFeBr4 crystallize orthorhombic in the BaSO4-type, NH4FeBr4 monoclinic in the KAlBr4-type, KFeBr4 orthorhombic in the GaGaCl4-type, NaFeBr4 monoclinic in the NaGaBr4-type, AgFeBr4 and LiFeBr4 monoclinic in the LiAlCl4-type, while the structure of TlFeBr4 is still unknown.  相似文献   

17.
Preparation and Crystal Structure of PI4+AlI4? PI4+AlI4? was prepared and its crystal structure determined by single crystal X-ray data (orthorhombic, Pna21, a = 1109.4, b = 1048.5, c = 1529.3 pm, V = 1778.8 · 106 pm3, Z = 4). The nearly tetrahedral cations and anions (mean P? I and Al? I distances: 239.6 and 251.8 pm respectively) are connected to a three-dimensional structure by weak iodine-iodine bonds (338.6–345.1 pm).  相似文献   

18.
Crystal Structure of (NH4)3SnF7: A Double Salt According to (NH4)3[SnF6]F and not (NH4)4SnF8 (NH4)3SnF7 is obtained as colourless single crystals from the reaction of NH4HF2 with tin powder at 300°C. The crystal structure (cubic, Pm3m, Z = 1, a = 602.5(1) pm at 293 K; a = 598.0(1) pm at 100 K) contains [SnF6]2? octahedra and lonesome F? ions surrounded by NH4+ cations only; it may be considered as a derivative of the Cu3Au-type of structure according to Cu3[Au]□ ?(NH4)3[SnF6]F. The F? ions of the [SnF6]2? octahedra with their Sn4+ centre in the origin of the unit cell at m3m are disordered in different ways at 293 and 100 K, respectively.  相似文献   

19.
The α and β modifications of NH4HPO3F were synthesized and characterized with single crystal X‐ray diffraction. The crystal structure of α‐NH4HPO3F determined at 180 K is monoclinic, space group P21/n, with a = 7.4650(1), b = 15.586(2), c = 7.5785(9) Å, β = 108.769(9)°, V = 834.9(2) Å3, Z = 8, and R1 = 0.0376 and wR2 = 0.0818. β‐NH4HPO3F measured at 310 K crystallizes in the triclinic space group, P 1, with a = 7.481(1), b = 7.511(1), c = 7.782(1) Å, α = 84.31(1), β = 84.20(1), γ = 68.67(2)°, V = 404.31(9) Å3, Z = 4, and R1 = 0.0254 and wR2 = 0.0735. A phase transition was not observed between 180 and 310 K for β‐NH4HPO3F. Both modifications of NH4HPO4F consist of HPO3F and NH4+ units. Two pairs of two unique anions are linked to each other by O–H…O hydrogen bonds to form cyclic tetramers held together by N–H…O bonds. No O–H…F or N–H…F bonds were observed.  相似文献   

20.
The crystal structures of tetrachloroferrate(III) complexes having stoichiometry (BH)+ [FeCl4]? (where B = isoquinoline and 4‐aminopyridine) were determined at 100 K. While weak interactions, particularly N–H···Cl hydrogen bonds, are evident in the structures, distances between the Fe(III) centers are quite long in both cases. The structure of the compound with B = quinoline was compared with that previously established at room temperature, and showed that neither solid‐solid nor magnetic phase transitions occurred in this temperature range. Magnetic measurements on the paramagnetic powders indicate weak antiferromagnetic interactions transmitted through the crystal lattice, giving rise to Néel temperatures that are significantly below 10 K. Comparisons are made with other characterized [FeCl4]? compounds having similar organic base cations, enabling clarification of the superexchange mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号