首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Series of [FePt(4min)/Fe(tFe)]10 multilayers have been prepared by RF magnetron sputtering and post-annealing in order to optimize their magnetic properties by structural designs. The structure, surface morphology, composition and magnetic properties of the deposited films have been characterized by X-ray diffractometer (XRD), Rutherford backscattering (RBS), scanning electron microscope (SEM), energy dispersive X-ray spectroscope (EDX) and vibrating sample magnetometer (VSM). It is found that after annealing at temperatures above 500 °C, FePt phase undergoes a phase transition from disordered FCC to ordered FCT structure, and becomes a hard magnetic phase. X-ray diffraction studies on the series of [FePt/Fe]n multilayer with varying Fe layer thickness annealed at 500 and 600 °C show that lattice constants change with Fe layer thickness and annealing temperature. Both lattice constants a and c are smaller than those of standard ones, and lattice constant a decreases as Fe layer deposition time increases. Only a slight increase in grain size was observed as Fe layer decreased in samples annealed at 500 °C. However, the increase in grain size is large in samples annealed at 600 °C. The coercivities of [FePt/Fe]n multilayers decrease with Fe layer deposition time, and the energy product (BH)max reaches a maximum in the samples with Fe layer deposition time of 3 min. Comparison of magnetic properties with structure showed an almost linear relationship between the lattice constant a and the coercivities of the FePt phase.  相似文献   

2.
A 59Co NMR study has been carried out on several series of co-evaporated Co1-xFex thin-film alloys prepared on MgO (001), GaAs (100), and GaAs (110) substrates at deposition temperatures between 175°C and 500°C. The sample thicknesses varied between 100 Å and 1000 Å and the alloy concentrations were in the range 0:1 < x < 0:3. X-ray diffraction and NMR show that the stability limits of the bcc phase in CoFe alloys is shifted from the x = 0:25 observed in the bulk alloys down to about x = 0:11 in thin films. For x = 0:27 and at the deposition temperature of 500°C, a new ordered phase has been stabilised where Co has two Fe atoms only in its first coordination shell. Other samples, grown at lower temperatures, also exhibit an exotic chemical short range order (CSRO) where Co coordinations with zero and two Fe neighbours dominate. A mixture of bcc Co (and not fcc Co as in the bulk alloys) and unknown ordered bcc intermetallics can account for the observed CSRO. Theoretical ground-state phases for the bcc lattice are considered in order to explain the observations.  相似文献   

3.
Alloys of Y1???x Gd x Fe2B y (x = 0, 0.25, 0.5, 0.75 and 1; y = 0, 0.1, 0.15 and 0.2) have been prepared and investigated for structural and magnetic properties. The compounds with x = 0 and 1 are found to form in single phase with C15-type cubic Laves phase structure, while those with x = 0.25, 0.5 and 0.75 are observed to form with small quantities of secondary (Y,Gd)Fe3 phase. The lattice parameters, Curie temperature and the average Fe hyperfine field are found to increase with increasing x. The Gd–Gd and Gd–Fe interactions are attributed to be the main reason for the enhancement of magnetic properties. Boron was found to stabilize the (Y,Gd)Fe2 phase without affecting the magnetic properties.  相似文献   

4.
FeO x -hydroxyapatite (FeO x -HAP) composites with different FeO x contents were prepared, and compared with pure FeOx, the FeO x -HAP composites exhibit strongly magnetic behavior in an external magnetic field even after 600 °C calcination. The combination of 57Fe Mössbauer and Fe K-edge XAFS indicates that HAP can stabilize the size and crystal phase of γ-Fe2O3 during heat treatment. Even after 600 °C calcination, the interaction imposed by HAP could produce large amounts of distorted octahedral coordination Fe sites in the interior lattice and then result in strong magnetism. The thermally stable γ-Fe2O3-HAP composites may provide a new opportunity for developing efficient supported crystal-dependent catalysts.  相似文献   

5.
Bismuth layer-structured (Bi7−xSrx)(Fe3−xTi3+x)O21 (BSFT) ceramics were synthesized and the ferroelectric properties and crystal structure were investigated. X-ray powder diffraction profiles and refinement of the lattice parameters indicated single phase BSFT was obtained in the composition range 0-1.5. The lattice parameter b of BSFT remained almost constant, while a slight decrease in the lattice parameter a was observed by the Sr and Ti substitution for Bi and Fe, respectively, which indicated an increase in the orthorhombicity. The dependence of the BSFT lattice parameter on temperature implied a phase transition from the orthorhombic to the tetragonal phase, which was in good agreement with the Curie temperature. The remnant polarization Pr, of BSFT was significantly improved by the Sr and Ti substitution for Bi and Fe, and ranged from 9 to 16 μC/cm2, although no remarkable variation in the coercive field Ec was observed. As a result, a well-saturated P-E hysteresis loop of BSFT ceramic was obtained at x=0.5 with a Pr of 30 μC/cm at an applied voltage of 280 kV/cm.  相似文献   

6.
Fe50Mn15-xCoxNi35(x=0,1,3,5,7)alloys were prepared by arc melting under purified argon atmosphere.The ingots were homogenized at 930°C for 90h followed by water quenching.The crystal structure,magnetic properties and magnetocaloric effects of the alloys were studied by X-ray diffraction(XRD)and MPMS-7-type SQUID.The results show that all samples still maintained a single-(Fe,Ni)-type phase structure.With the increase of the content of Co,the Curie temperatures of these alloys increased and exhibited a second-order magnetic transition from ferromagnetic(FM)to paramagnetic(PM)state near Curie temperature.The maximum magnetic entropy change and the relative cooling power of Fe50Mn10Co5Ni35alloy was 2.55 J/kg·K and 181 J/kg,respectively,for an external field change of 5T.Compared with rare earth metal Gd,Fe50Mn15-xCoxNi35 series of alloys have obvious advantage in resource price;their Curie temperatures can be tuned to near room temperature,maintain a relatively large magnetic entropy change at the same time and they are a type of potential magnetic refrigeration materials near room temperature.  相似文献   

7.
The growth of a Fe sublayer 1.5–14.0 monolayers (MLs) thick and a Cu film (about 5 MLs) on this sublayer is studied at a reduced temperature (1240°C) and an elevated temperature (1400°C) of a Fe source and at a reduced temperature (900°C) of a Cu source. The films are examined by Auger electron spectroscopy, low-energy electron diffraction, and atomic force microscopy. As metal sources, thin Fe and Cu strips on a Ta foil are used. It is shown that a nonequilibrium 2D phase forms in the Fe-on-Si(001) film up to a thickness of 4–5 MLs. This phase appears as closely packed atomically smooth nanoislands. When the thickness of the film exceeds 4–5 MLs, the nonequilibrium Fe phase changes to the bulk (3D) phase of Fe and its silicide Fe x Si. At Fe source temperatures of 1240 and 1400°C, the nonequilibrium phase consists of Fe with Si segregated on the Fe surface, and a Fe-Si mixture. Copper on the nonequilibrium Fe and Fe-Si phases grows, respectively, as a smooth layer Cu with Si segregated on the top and in the form of Cu-Fe and Cu-Si mixtures. Cu islands growing on the bulk Fe and Fe x Si phases have smaller and larger sizes, respectively.  相似文献   

8.
Ba-ferrite powders of composition BaFe11.6−2xCoxTixO19 (with x varying from 0 to 1.1) were prepared by the sol–gel and spray-drying techniques. Green powders showed an amorphous structure. They were heat-treated from 850°C to 1000°C to promote crystallisation and to study the dependence of the magnetic properties on the annealing temperature. Unlike the evaporation-dried powders, the spray-dried samples showed a highly homogeneous structure, which consisted of spherical particles with sizes ranging from 0.1 to ∼0.3 μm. As for the magnetic properties, the saturation magnetisation and remanence remained practically constant up to x=0.8 for all heating temperatures, whereas the coercivity fell uniformly as x increased from ∼5.5 to ∼0.1 kOe.  相似文献   

9.
The structural and magnetic properties of PrMn2−xCrxGe2 (0⩽x⩽1.0) were studied by X-ray diffraction and magnetization measurements. The powder samples crystallize in the ThCr2Si2-type structure, and the lattice constants at room temperature show almost no variation as Cr substitutes Mn. The observed phase transitions are summarized in a proposed magnetic xT phase diagram and compared with previous Moessbauer spectroscopy and neutron diffraction results for x=0.  相似文献   

10.
The effect of chromium content on the fundamental mechanical properties of Fe-Cr alloys has been studied by first-principles calculations. Within a random solid solution model, the lattice constants and the elastic constants of ferromagnetic bcc Fe1?x Cr x (0? · ?0.156) alloys were calculated for different compositions. With addition of Cr content, the lattice parameters of Fe-Cr alloys are larger than that of pure Fe solid, and the corresponding Young??s modulus and shear modulus rise nonmonotonically with the increasing Cr content. All alloys (except 9.4 at% Cr) exhibit less ductile behavior compared with pure bcc Fe. For the Fe1?x Cr x (0? · ?0.156) alloys, the average magnetic moment per atom decreases linearly with the increasing Cr concentration.  相似文献   

11.
A series of Mn substituted MgCuZn ferrites (Mg0.2Cu0.2Zn0.6O) (Fe2−xMnxO3)0.97 with x=0.00,0.01,0.03,0.05,0.07 were prepared with nanosized precursor powders synthesized by a sol–gel auto-combustion method. All the ceramic samples can be sintered at low temperature (930°C) (below the melt point of Ag (961°C)). The effect of Mn content on microstructures and magnetic properties were investigated. Experiment shows that low temperature sintered MgCuZn ferrites doped with Mn possess higher initial permeability and better grain structure than that of low temperature sintered NiCuZn ferrites prepared by the same method. Therefor, Mn doped MgCuZn ferrites should be ideal materials for high inductance multilayer chip inductor. It is thought that the variation of initial permeability of MgCuZn ferrites with the Mn substitution was attributed to the decrease of magnetostriction constant.  相似文献   

12.
We report on the defects related room temperature ferromagnetic characteristics of Zn0.95-xMnxLi0.05O (x = 0.01, 0.03, 0.05 and 0.08) thin films grown on glass substrates using reactive magnetron sputtering. By increasing the Mn content, the films exhibited increases in the c-axis lattice constant, fundamental band gap energy, coercive field and remanent magnetization. Comparison of the structural and magnetic properties of the as-deposited and annealed films indicates that the hole carriers, together with defects concentrations, play an important role in the ferromagnetic origin of Mn and Li co-doped ZnO thin films. The ferromagnetism in films can be described by bound magnetic polaron models with respect to defect-bound carriers.  相似文献   

13.
In this work, an effective method to modulate the ferromagnetic properties of Mn-doped GeTe chalcogenide-based phase change materials is presented. The microstructure of the phase change magnetic material Ge1?x Mn x Te thin films was studied. The X-ray diffraction results demonstrate that the as-deposited films are amorphous, and the crystalline films are formed after annealing at 350 °C for 10 min. Crystallographic structure investigation shows the existence of some secondary magnetic phases. The lattice parameters of Ge1?x Mn x Te (x = 0.04, 0.12 and 0.15) thin films are found to be slightly different with changes of Mn compositions. The structural analysis clearly indicates that all the films have a stable rhombohedral face-centered cubic polycrystalline structure. The magnetic properties of the amorphous and crystalline Ge0.96Mn0.04Te were investigated. The measurements of magnetization (M) as a function of the magnetic field (H) show that both amorphous and crystalline phases of Ge0.96Mn0.04Te thin film are ferromagnetic and there is drastic variation between amorphous and crystalline states. The temperature (T) dependence of magnetizations at zero field cooling (ZFC) and field cooling (FC) conditions of the crystalline Ge0.96Mn0.04Te thin film under different applied magnetic fields were performed. The measured data at 100 and 300 Oe applied magnetic fields show large bifurcations in the ZFC and FC curves while on the 5,000 Oe magnetic field there is no deviation.  相似文献   

14.
The thermal diffusivities of UC1 ? xNx of several compositions were measured from 100 to 1000 °K by a laser flash method. The thermal conductivity was separated into electronic and phonon components by assuming the constant Lorenz number. The phonon conductivity showed an anomalous behaviour against composition at low temperatures. The total thermal conductivity of UC1 ? xNx showed a minimum above 300 °K at an intermediate composition which moved to higher carbon content with increasing temperature. This behaviour was explained by the temperature dependence of the lattice and electronic components.  相似文献   

15.
Fe/TaO x /Co trilayers were grown on Si(100)/SiO2 substrates and on tantalum buffer layers by a high vacuum magnetron sputtering system. The effects of both Ta buffer layer and tantalum-oxide barrier layer thickness on the structural and magnetic properties and the coupling of the ferromagnetic layers have been studied. It was observed that Ta improves the structural properties of the Fe layer resulting in an increased coercive field. For a barrier thickness of 4 nm a weak decoupling starts to appear between the ferromagnetic layers and a clear step formation is observed with increasing thickness. The minor hysteresis loops predict an interlayer coupling for thin barriers. The annealing of trilayers up to 250°C shows an increased coercivity for only the Fe layer. Annealing further at 400°C has the opposite effect of decreasing the coercivity, indicating intermixing at the interfaces of the Fe. The refractive index of the insulator barrier shows that the barrier layer is not totally in the form of tantalum-pentoxide.  相似文献   

16.
The processes that occur in ultrathin (up to 1 nm) Fe and Co layers during deposition onto the Si(100)2 × 1 surface in various sequences and during annealing of the formed structures to a temperature of 400°C are studied. The elemental and chemical compositions of the films are analyzed by in situ high-resolution X-ray photoelectron spectroscopy using synchrotron radiation, and their magnetic properties are determined using the magnetic linear dichroism effect in the angular distribution of Fe 3p and Co 3p electrons. It is shown that, when iron is first deposited, the formed structure consists of the layers of FeSi, Fe3Si, Co-Si solid solution, and metallic cobalt with segregated silicon. The structure formed in the alternative case consists of the layers of CoSi, Co-Si solid solution, Co, Fe-Si solid solution, and Fe partly covered by silicon. All layers (apart from FeSi, CoSi) form general magnetic systems characterized by ferromagnetic ordering. Annealing of the structures at temperatures above 130dgC (for the Co/Fe/Si system) and ~200°C (for Fe/Co/Si) leads to the formation of nonmagnetic binary and ternary silicides (Fe x Co1 ? x Si, Fe x Co2 ? x Si).  相似文献   

17.
In order to gain better insight into the origin of the observed differences between Fe3−xCrxAl and Fe3−xCrxSi, alloys of Fe3−xCrxAl0.5Si0.5 (x=0, 0.125, 0.250, 0.375 and 0.5) were prepared and studied by means of X-ray and neutron diffraction as well as by magnetization measurements. Electronic structure calculations of these alloys have been performed by means of TB-LMTO-ASA method. It was expected, and experimentally verified, that the presence of silicon and aluminum atoms in 1:1 proportion will result in the independence of the lattice parameter on the iron/chromium concentration. All samples have been proved to be a single phase of the DO3-type of structure. Theoretical and experimental results indicate that chromium atoms locate preferentially in B sublattice. Cr magnetic moments are oriented antiparallel to Fe magnetic moments. Neutron measurements show a linear dependence of the magnetic moments of Fe(A,C), Fe(B) and Cr(B) as a function of Cr concentration. However the calculated total magnetic moment decreases faster with chromium content than indicated by the experiment.  相似文献   

18.
Bulk samples of K doping K2xFeTe1-xSx with x = 0.07, 0.1, 0.2, 0.3 are successfully prepared by using easy-to-use stable compound K2S as the reactant. The lattice constant calculated from X-ray diffraction patterns indicate that K ions enter the Fe-Te-S layers. K doping is beneficial enhance the superconductivity transition temperature from the R-T curves. The apparent diamagnetic signal is observed in M-T curves when the content of K is smaller than 0.1. However, differential curves (dM/dT) in K-rich samples appear sharp slope mutations, which means that the Meissner effect signal is covered by the increased excess ferromagnetic ions. The number of excess Fe magnetic ions is proportional to K content, which may play an important role in determining the superconductivity.  相似文献   

19.
A. K. Mishra  C. Bansal 《Pramana》2005,65(5):847-854
Starting with Cu0.65Zn0.35 with an e/a ratio of 1.35 we studied the phase formation in nanophase (Cu0.65Zn0.35)1?x Fe x alloys in the concentration range 0.1 ≤x ≤0.7 to see the effect of altering the electron concentration. The evolution of bcc phase from the fcc phase as a function of Fe concentration was investigated by Mössbauer spectroscopy and X-ray diffraction. The grain size, lattice parameters, and average hyperfine magnetic field distributions were estimated for the nanophase alloys. The fcc phase was observed to persist up to 40 atomic per cent Fe substitutions, a mixed (fcc + bcc) phase region up to 70 atomic per cent Fe and bcc phase beyond 70 atomic per cent Fe. The magnetic state of the alloys changed from nonmagnetic forx ≤0.3 to magnetically ordered state at room temperature forx ≤0.33, which lies in the fcc phase region. The fcc phase alloys of Fe with non-magnetic metals have very low magnetic transition temperatures. However, in this system the room temperature state is unusually magnetic  相似文献   

20.
The effect of Fe substitution for the vacant site in half-Heusler alloy CoCrAl is studied. A series of single phase CoFexCrAl (x=0.0, 0.25, 0.5, 0.75 and 1.0) alloys has been successfully synthesized. The lattice constant is found to increase almost linearly with increasing Fe content, indicating Fe atoms enter the lattice of CoCrAl instead of existing as a secondary phase. When Fe entering the vacant site, spin polarization occurs and the alloy turns from a semimetal in CoCrAl to a half-metallic ferromagnet (HMF) in CoFeCrAl. This is due to the reconstruction of the energy band with Fe substitution. The Curie temperature and saturation magnetic moments are enhanced and increase monotonically with increasing Fe content. The variation of the spin moment follows the Slater-Pauling curve and agrees with the theoretical calculation as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号