首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Fluorescent vesicles considered as a mimic of natural primitive cells are prepared from poly(3‐hexylthiophene)‐block‐poly(3‐O‐methacryloyl‐D‐galactopyranose) P3HT‐b‐PMAGP copolymers. The unique characteristic of such vesicular nanostructures is their architecture, which comprises a hydrophobic π‐conjugated P3HT wall stabilized by a hydrophilic PMAGP interface featuring glucose units. The results of this work offer a very efficient and straightforward method for engineering well‐controlled fluorescent nanoparticles (without the addition of dyes), which provide an excellent support to the study of carbohydrate‐protein interactions.

  相似文献   


2.
Based on their rigid‐rod structure all‐conjugated, rod‐rod block copolymers show a preferred tendency to self‐assemble into low‐curvature vesicular or lamellar nanostructures independent from their specific chemical structure and composition. This unique and attractive behaviour is clearly illustrated in a few examples of such all‐conjugated block copolymers. The resulting nanostructured heteromaterials may find applications in electronic devices or artificial membranes.

  相似文献   


3.
4.
Block copolymers create various types of nano‐structures, e. g., spheres, rods, cubes, and lamellae. This review discloses the dynamic macromolecular organization of block copolymers comprising poly(L ‐lactide) (PLLA) and poly(oxyethylene) (PEG) that allows to simulate elaborate biological systems. The block copolymers, AB‐ (PLLA‐PEG) and ABA‐type (PLLA‐PEG‐PLLA), are synthesized by ordinary lactide polymerization to have a controlled block length. They are dispersed into an aqueous medium to prepare nano‐scale particles, consisting of hydrophobic PLLA and hydrophilic PEG in the core and shell, respectively. Then, the particles are placed on a flat substrate by the casting method. The particles are detected as discoids by AFM, having shrunk with loss of water. Heat‐treatment of these particles at 60°C (above Tg of PLLA) gives rise to a collapse into small fragments, which then aggregate into bands with nano‐size width and thickness. The PLLA‐PEG bands align parallel to each other, while the PLLA‐PEG‐PLLA bands form a characteristic network resembling the neuron system created in animal tissue. As analyzed by TEM diffraction, each is composed of α‐crystal of PLLA whose c‐axis (molecular axis) is perpendicular to the substrate surface. Based on this fact, a doubly twisted chain structure of PLLA is proposed in addition to a plausible mechanism for the self‐organization of the block copolymers. Derivatives of the PLLA‐PEG block copolymers can form far more interesting nano‐architectures. An equimolar mixture of enantiomeric copolymers, PLLA‐PEG‐PLLA and PDLA‐PEG‐PDLA, forms a hydrogel that is thermo‐responsive. The terminal‐modified poly(L ‐lactide)‐block‐polyoxyethylene monocinnamate (PLLA‐PEG‐C) forms a highly stabilized nanofiber by the photo‐reaction of the cinnamates placed in the outer layer of the nanobands.  相似文献   

5.
A novel co‐assembly based on the block copolymer bearing photocleavable groups and macroanionic polyoxometalates Na9[Ln(W5O18)2] (LnW10, Ln = Eu, Dy) triggered by UV light is realized in aqueous solution. The copolymer synthesized by atom transfer radical polymerization (ATRP) undergoes irreversible cleavage upon UV irradiation to generate primary amine (pKa ≈ 8–9) residues which are completely protonated under a neutral pH in aqueous solution. Electrostatic attractions between the resulting positively charged copolymers and anionic LnW10 drive the formation of assemblies. In situ small angle X‐ray scattering and transmission electron microscopy are used to characterize the morphology of the assemblies. The microenvironments around polyoxometalates in the core of hybrid assemblies become highly hydrophobic, resulting in dramatically enhanced photoluminescence with the obvious intensity enhancement. The solution parameters pH and salt additives show great effects on the formation of assemblies.

  相似文献   


6.
Summary: A convenient three‐step strategy has been developed for the preparation of well‐defined amphiphilic, linear‐hyperbranched block copolymers by hypergrafting. The synthetic procedure is based on a combination of carbanionic polymerization with the alkoxide‐based, controlled ring‐opening multibranching polymerization of glycidol. A linear AB diblock copolymer polystyrene‐block‐polybutadiene (PS‐b‐PB) with narrow polydispersity was obtained by anionic copolymerization. Subsequent hydroxylation by hydroboration led to PS508b‐(PB‐OH)56, used as macroinitiator for the polymerization of glycidol under slow monomer addition conditions.

Structure of the linear‐hyperbranched amphiphilic AB diblock copolymer PS508b‐(PB56hg‐PGx) and an AFM micrograph of its micellar core–shell structure observed after solution casting.  相似文献   


7.
siRNA delivery remains a major challenge in RNAi‐based therapy. Here, we report for the first time that an amphiphilic dendrimer is able to self‐assemble into adaptive supramolecular assemblies upon interaction with siRNA, and effectively delivers siRNAs to various cell lines, including human primary and stem cells, thereby outperforming the currently available nonviral vectors. In addition, this amphiphilic dendrimer is able to harness the advantageous features of both polymer and lipid vectors and hence promotes effective siRNA delivery. Our study demonstrates for the first time that dendrimer‐based adaptive supramolecular assemblies represent novel and versatile means for functional siRNA delivery, heralding a new age of dendrimer‐based self‐assembled drug delivery in biomedical applications.  相似文献   

8.
We report the first instance of facile synthesis of dumbbell‐shaped dendritic‐linear‐dendritic triblock copolymer, [G‐3]‐PNIPAM‐[G‐3], consisting of third generation poly(benzyl ether) monodendrons ([G‐3]) and linear poly(N‐isopropylacrylamide) (PNIPAM), via reversible addition‐fragmentation chain transfer (RAFT) polymerization. The key step was the preparation of novel [G‐3]‐based RAFT agent, [G‐3]‐CH2SCSSCH2‐[G‐3] (1), from third‐generation dendritic poly(benzyl ether) bromide, [G‐3]‐CH2Br. Due to the bulky nature of [G‐3]‐CH2Br, its transformation into trithiocarbonate 1 cannot go to completion, a mixture containing ~80 mol % of 1 and 20 mol % [G‐3]‐CH2Br was obtained. Dumbbell‐shaped [G‐3]‐PNIPAM310‐[G‐3] triblock copolymer was then successfully obtained by the RAFT polymerization of N‐isopropylacylamide (NIPAM) using 1 as the mediating agent, and trace amount of unreacted [G‐3]‐CH2Br was conveniently removed during purification by precipitating the polymer into diethyl ether. The dendritic‐linear‐dendritic triblock structure was further confirmed by aminolysis, and fully characterized by gel permeation chromatography (GPC) and 1H‐NMR. The amphiphilic dumbbell‐shaped triblock copolymer contains a thermoresponsive PNIPAM middle block, in aqueous solution it self‐assembles into spherical nanoparticles with the core consisting of hydrophobic [G‐3] dendritic block and stabilized by the PNIPAM central block, forming loops surrounding the insoluble core. The micellar properties of [G‐3]‐PNIPAM310‐[G‐3] were then fully characterized. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1432–1445, 2007  相似文献   

9.
An approach for the preparation of block copolymer vesicles through ultrasonic treatment of polystyrene‐block‐poly(2‐vinyl pyridine) (PS‐b‐P2VP) micelles under alkaline conditions is reported. PS‐b‐P2VP block copolymers in toluene, a selective solvent for PS, form spherical micelles. If a small amount of NaOH solution is added to the micelles solution during ultrasonic treatment, organic‐inorganic Janus‐like particles composed of the PS‐b‐P2VP block copolymers and NaOH are generated. After removal of NaOH, block copolymer vesicles are obtained. A possible mechanism for the morphological transition from spherical micelles to vesicles or Janus‐like particles is discussed. If the block copolymer micelles contain inorganic precursors, such as FeCl3, hybrid vesicles are formed, which may be useful as biological and chemical sensors or nanostructured templates. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 953–959  相似文献   

10.
11.
Exclusive organic templating of macroporous oxide films is reported by using non‐close and lose packing of spherical copolymer aggregates, in combination with facile control of condensation degree/density of inorganic oxide frameworks. Unique macroporous oxide films, mainly titania showing highly porous, crystalline, and versatile properties, can be fabricated with continuous design from unusual 3‐D net‐shape to tunable spherical macrostructures, which expands the preparation of other inorganic oxide films (silica, alumina, and zirconia) and possibly adapts the use of other assembled organic polymers. The macroporous structures are helpful for effective accommodation of bulky biomoleculeshigh and diffusivity of organic molecules (useful for photocatalysts). Unusual structural variation, expansion of spherical voids, is also observed, being useful for fine tuning of optical property.  相似文献   

12.
Self‐assembly of macromolecules is fundamental to life itself, and historically, these systems have been primitively mimicked by the development of amphiphilic systems, driven by the hydrophobic effect. Herein, we demonstrate that self‐assembly of purely hydrophilic systems can be readily achieved with similar ease and success. We have synthesized double hydrophilic block copolymers from polysaccharides and poly(ethylene oxide) or poly(sarcosine) to yield high molar mass diblock copolymers through oxime chemistry. These hydrophilic materials can easily assemble into nanosized (<500 nm) and microsized (>5 μm) polymeric vesicles depending on concentration and diblock composition. Because of the solely hydrophilic nature of these materials, we expect them to be extraordinarily water permeable systems that would be well suited for use as cellular mimics.  相似文献   

13.
Nanoparticles formed from amphiphilic block copolymers can be used as drug delivery vehicles for hydrophilic therapeutics. Poly(ethylene glycol) (PEG)‐peptide copolymers were investigated for their self‐assembling properties and as consequent potential delivery systems. Mono‐ and dihydroxy PEGs were functionalized with a pentavaline sequence bearing Fmoc end groups. The molecular weight of the PEG component was varied to evaluate copolymer size and block number. These di‐ and tri‐block copolymers readily self‐assemble in aqueous solution with critical aggregation concentrations (CACs) of 0.46–16.29 μM. At concentrations above the CAC, copolymer solutions form spherical assemblies. Dynamic light scattering studies indicate these aggregates have a broad size distribution, with average diameters between 33 and 127 nm. The copolymers are comprised β‐conformations that are stable up to 80 °C, as observed by circular dichroism. This peptide secondary structure is retained in solutions up to 50% MeOH as well. The triblock copolymers proved to be the most stable, with copolymers synthesized from 10 kDa PEG having the most stable particles. Loading of carboxyfluorescein at 2–5 mol % shows that these copolymers have the potential to encapsulate hydrophilic drugs for delivery applications. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
Nanostructured polyion complexes (PICs) are appealing in biomaterials applications. Yet, conventional assembly suffers from the weakness in scale‐up and reproducibility. Only a few low‐dimensional PICs are available to date. Herein we report an efficient and scalable strategy to prepare libraries of low‐dimensional PICs. It involves a visible‐light‐mediated RAFT polymerization of ionic monomer in the presence of a polyion of the opposite charge at 5–50 % w/w total solids concentration in water at 25 °C, namely, polymerization‐induced electrostatic self‐assembly (PIESA). A Vesicle, multi‐compartmental vesicle, and large‐area unilamellar nanofilm can be achieved in water. A long nanowire and porous nanofilm can be prepared in methanol/water. An unusual unimolecular polyion complex (uPIC)‐sphere‐branch/network‐film transition is reported. This green chemistry offers a general platform to prepare various low‐dimensional PICs with high reproducibility on a commercially viable scale under eco‐friendly conditions.  相似文献   

15.
A comprehensive study is reported on the effect of salt concentration, polyelectrolyte block length, and polymer concentration on the morphology and structural properties of nanoaggregates self‐assembled from BAB single‐strand DNA (ssDNA) triblock polynucleotides in which A represents polyelectrolyte blocks and B represents hydrophobic neutral blocks. A morphological phase diagram above the gelation point is developed as a function of solvent ionic strength and polyelectrolyte block length utilizing an implicit solvent ionic strength method for dissipative particle dynamics simulations. As the solvent ionic strength increases, the self‐assembled DNA network structures shrinks considerably, leading to a morphological transition from a micellar network to worm‐like or hamburger‐shape aggregates. This study provides insight into the network morphology and its changes by calculating the aggregation number, number of hydrophobic cores, and percentage of bridge chains in the network. The simulation results are corroborated through cryogenic transmission electron microscopy on the example of the self‐assembly of ssDNA triblocks.  相似文献   

16.
Water pump : Polyion complex (PIC) vesicles are spontaneously formed from PIC microdroplets, which are formed by mixing cationic and anionic polymers (see picture). The formation process can be reversibly controlled by local heating with a focused infrared laser that triggers microphase separation and subsequent water influx. The size of the resulting giant unilamellar vesicles is determined by the initial size of the PIC droplets.

  相似文献   


17.
Amphiphilic polybutadiene polyethylene oxide (PB‐PEO) is one of the best known chemistries to form stable vesicular morphologies, stated as polymersomes, in aqueous environment. Mimicking cell membranes, these structures self‐assemble in an “amphiphilic window” determined by 0.15 < f < 0.35 where f is the ratio between the hydrophilic block volume and the entire diblock volume. However the polymersome size distribution also depends on molecular weight (Mn) and in order to gain insight on how f and Mn together determine polymersome size, we prepared PB‐PEO diblock copolymers with different block lengths and analyzed vesicle morphology via Dynamic light scattering (DLS) and Freeze‐fracture transmission electron microscopy (FF‐TEM). We found three main regimes: high f / low Mn with polymersomes of mixed diameter, high f / high Mn with mainly large polymersomes and low f, with mainly small polymersomes. In the first region, the polymersomes are highly polydisperse. There is a tendency towards increased diameter with increasing f and Mn. Taken together our findings can help to identify how polymersome self‐assembly can be controlled to achieve size distribution specificity alleviating the need for subsequent tuning of size via extrusion. This can pave the way for cost‐effective upscaling of polymersome production for biomedical and biomimetic applications. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 699–708  相似文献   

18.
Summary: The phase behavior of metallo‐supramolecular block copolymers with bulky counter ions is theoretically studied within the framework of a mean‐field dynamic density functional theory and compared with recent experiments on a polystyrene–poly(ethylene oxide) metallo‐supramolecular diblock copolymer, PS20‐[Ru]‐PEO70, with tetraphenylborate counter ions. The copolymer is modeled as a triblock polyelectrolyte, in which the metal complex is treated as the polyelectrolyte block. The topology and kinetics of the formation of the observed three‐domain lamellar morphology in which the polyelectrolyte blocks and bulky counter ions are located together to form electroneutral complexes, are in good agreement with experimental results. In addition, the model predicts the existence of core–shell morphologies. The agreement with and variations from the experimental phase diagram are discussed in detail.

Morphological transformations in a metallo‐supramolecular block copolymer with bulky counter ions upon increasing the temperature.  相似文献   


19.
Self assembly of block copolymers has gained considerable attention because of its potential use in various areas such as medical and biomedical applications, nanotechnology, and electronics. Herein, we present the synthesis and characterization of amphiphilic block‐random copolymers with a covalently incorporated pH‐sensitive dye, namely eosin. Ring opening metathesis polymerization was chosen for the preparation of well defined block copolymers and block‐random copolymers using a modified “2nd Generation Grubbs” initiator. The self assembly behavior of the block‐random copolymers in solution was studied by dynamic light scattering and small angle X‐ray scattering (SAXS). The influence of dye incorporation on the result of the self assembly process in methanol and ethanol was investigated and a subtle interplay of the nature of the selective solvent, the chain‐length of the block copolymer and the position of the dye within the polymer chain was established. Structural investigations using SAXS revealed a spherical shape and a core‐shell structure of exemplary block and block‐random copolymer micelles. UV–vis absorption and photoluminescence measurements revealed similar optical properties for polymer micelles in methanol compared to polymer solutions in THF. The pH‐sensitive behavior of the eosin dye was preserved within the micelles. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 401–413, 2008  相似文献   

20.
The synthesis of three series of double hydrophilic block copolymers (DHBCs), consisting of poly(ethylene oxide) as the neutral water soluble block and a second polyelectrolyte block of variable chemistry, is described. The synthetic scheme involves the anionic polymerization of poly(ptert‐butoxystyrene‐b‐ethylene oxide) (PtBOS‐PEO) amphiphilic block copolymer precursors followed by the acidic hydrolysis of the hydrophobic poly(ptert‐butoxystyrene) (PtBOS) block to an annealed anionic polyelectrolyte poly(p‐hydroxystyrene) (PHOS) block. The PHOS block was subsequently transformed into a high charge density annealed cationic polyelectrolyte namely poly[3,5‐bis(dimethylaminomethylene) hydroxystyrene] (NPHOS), via aminomethylation. Finally, the NPHOS block was transformed into a quenched polyelectrolyte, namely quaternized poly[3,5‐bis(dimethylaminomethylene) hydroxystyrene] (QNPHOS) block by reaction with CH3I. The solution properties of the different series of the above block polyelectrolyte copolymers have been investigated using static, dynamic and electrophoretic light scattering, turbidimetry, and fluorescence spectroscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5790–5799, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号