首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
This article presents a novel III‐V on silicon laser. This work exploits the phenomenon that a passive silicon cavity, side‐coupled to a III‐V waveguide, will provide high and narrow‐band reflectivity into the III‐V waveguide: the resonant mirror. This results in an electrically pumped laser with a threshold current of 4 mA and a side‐mode suppression ratio up to 48 dB.

  相似文献   


2.
Microresonator‐based Kerr frequency comb (microcomb) generation can potentially revolutionize a variety of applications ranging from telecommunications to optical frequency synthesis. However, phase‐locked microcombs have generally had low conversion efficiency limited to a few percent. Here we report experimental results that achieve conversion efficiency ( on‐chip comb power excluding the pump) in the fiber telecommunication band with broadband mode‐locked dark‐pulse combs. We present a general analysis on the efficiency which is applicable to any phase‐locked microcomb state. The effective coupling condition for the pump as well as the duty cycle of localized time‐domain structures play a key role in determining the conversion efficiency. Our observation of high efficiency comb states is relevant for applications such as optical communications which require high power per comb line.

  相似文献   


3.
We report complete spatial shaping (both phase and amplitude) of the second‐harmonic beam generated in a nonlinear photonic crystal. Using a collinear second‐order process in a nonlinear computer generated hologram imprinted on the crystal, the desired beam is generated on‐axis and in the near field. This enables compact and efficient one‐dimensional beam shaping in comparison to previously demonstrated off‐axis Fourier holograms. We experimentally demonstrate the second‐harmonic generation of high‐order Hermite–Gauss, top hats and arbitrary skyline‐shaped beams.

  相似文献   


4.
By investigating the transmission of electromagnetic waves through random media composed of a random cluster of inclusions embedded in a “double‐zero” medium with simultaneously near‐zero permittivity and permeability, a percolation behavior of photons squeezing through the gaps between random inclusions with unity transmittance is observed. Interestingly, such a percolation exhibits a threshold induced by the long‐range connectivity of the “nonconducting” component in the transverse direction instead of the “conducting” component in the propagation direction, which is distinctly different from those in normal percolations. This unusual phenomenon, obtained by full wave simulations, is explained analytically through the introduction of a geometric concept hereby denoted as “free surfaces”. This work reveals a unique type of percolation threshold for electromagnetic waves with potential applications in energy harvesting, sensors and switches.

  相似文献   


5.
Photonic waveguide arrays provide an excellent platform for simulating conventional topological systems, and they can also be employed for the study of novel topological phases in photonics systems. However, a direct measurement of bulk topological invariants remains a great challenge. Here we study topological features of generalized commensurate Aubry‐André‐Harper (AAH) photonic waveguide arrays and construct a topological phase diagram by calculating all bulk Chern numbers, and then explore the bulk‐edge correspondence by analyzing the topological edge states and their winding numbers. In contrast to incommensurate AAH models, diagonal and off‐diagonal commensurate AAH models are not topologically equivalent. In particular, there appear nontrivial topological phases with large Chern numbers and topological phase transitions. By implementing Thouless pumping of light in photonic waveguide arrays, we propose a simple scheme to measure the bulk Chern numbers.

  相似文献   


6.
In this work, we report optomechanical coupling, resolved sidebands and phonon lasing in a solid‐core microbottle resonator fabricated on a single mode optical fiber. Mechanical modes with quality factors (Qm) as high as 1.57 × 104 and 1.45 × 104 were observed, respectively, at the mechanical frequencies and . The maximum  Hz is close to the theoretical lower bound of 6 × 1012 Hz needed to overcome thermal decoherence for resolved‐sideband cooling of mechanical motion at room temperature, suggesting microbottle resonators as a possible platform for this endeavor. In addition to optomechanical effects, scatter‐induced mode splitting and ringing phenomena, which are typical for high‐quality optical resonances, were also observed in a microbottle resonator.

  相似文献   


7.
Recently, metasurfaces have received increasing attention due to their ability to locally manipulate the amplitude, phase and polarization of light with high spatial resolution. Transmissive metasurfaces based on high‐index dielectric materials are particularly interesting due to the low intrinsic losses and compatibility with standard industrial processes. Here, it is demonstrated numerically and experimentally that a uniform array of silicon nanodisks can exhibit close‐to‐unity transmission at resonance in the visible spectrum. A single‐layer gradient metasurface utilizing this concept is shown to achieve around 45% transmission into the desired order. These values represent an improvement over existing state‐of‐the‐art, and are the result of simultaneous excitation and mutual interference of magnetic and electric‐dipole resonances in the nanodisks, which enables directional forward scattering with a broad bandwidth. Due to CMOS compatibility and the relative ease of fabrication, this approach is promising for creation of novel flat optical devices.

  相似文献   


8.
Optical metasurfaces are thin‐layer subwavelength‐patterned structures that interact strongly with light. Metasurfaces have become the subject of several rapidly growing areas of research, being a logical extension of the field of metamaterials towards their practical applications. Metasurfaces demonstrate many useful properties of metadevices with engineered resonant electric and magnetic optical responses combined with low losses of thin‐layer structures. Here we introduce the basic concepts of this rapidly growing research field that stem from earlier studies of frequency‐selective surfaces in radiophysics, being enriched by the recent development of metamaterials and subwavelength nanophotonics. We review the most interesting properties of photonic metasurfaces, demonstrating their useful functionalities such as frequency selectivity, wavefront shaping, polarization control, etc. We discuss the ways to achieve tunability of metasurfaces and also demonstrate that nonlinear effects can be enhanced with the help of metasurface engineering.

  相似文献   


9.
Nanophotonic beamsplitters are fundamental building blocks in integrated optics, with applications ranging from high speed telecom receivers to biological sensors and quantum splitters. While high‐performance multiport beamsplitters have been demonstrated in several material platforms using multimode interference couplers, their operation bandwidth remains fundamentally limited. Here, we leverage the inherent anisotropy and dispersion of a sub‐wavelength structured photonic metamaterial to demonstrate ultra‐broadband integrated beamsplitting. Our device, which is three times more compact than its conventional counterpart, can achieve high‐performance operation over an unprecedented 500 nm design bandwidth exceeding all optical communication bands combined, and making it one of the most broadband silicon photonics components reported to date. Our demonstration paves the way toward nanophotonic waveguide components with ultra‐broadband operation for next generation integrated photonic systems.

  相似文献   


10.
A diode‐pumped Yb:YAG MOPA‐System for the unprecedented generation of transform limited pulses with variable pulse duration in the range between 10 ps and 100 ps is presented. First applications relying on unique pulse parameters as modulation free spectrum, tunability and coherence length, namely the direct laser interference patterning (DLIP) and laser cooling of stored relativistic ion beams are highlighted. Pulses are generated by a mode‐locked fs‐oscillator while the spectral bandwidth is narrowed in the subsequent regenerative amplifier by an intra‐cavity grating monochromator. Two alternative booster amplifiers were added to increase the pulse energy to 100 μJ and 10 mJ, respectively.

  相似文献   


11.
The terahertz (THz) radiation from InGaN/GaN dot‐in‐a‐wire nanostructures has been investigated. A submicrowatt THz signal is generated with just ten vertically stacked InGaN quantum dots (QDs) in each GaN nanowire. Based on the experimental results and analysis, a single quantum wire is expected to generate an output power as high as 10 pW, corresponding to 1 pW per dot. These structures are among the most efficient three‐dimensional quantum‐confined nanostructures for the THz emission. By applying a reverse bias along the wires in a light‐emitting device (LED) consisting of such nanostructures, the THz output power is increased more than fourfold. Based on THz and photoluminescence (PL) experiments, the mechanism for the THz emission is attributed to dipole radiation induced by internal electric fields and enhanced by external fields.

  相似文献   


12.
We present a general theory of circular dichroism in planar chiral nanostructures with rotational symmetry. It is demonstrated, analytically, that the handedness of the incident field's polarization can control whether a nanostructure induces either absorption or scattering losses, even when the total optical loss (extinction) is polarization‐independent. We show that this effect is a consequence of modal interference so that strong circular dichroism in absorption and scattering can be engineered by combining Fano resonances with planar chiral nanoparticle clusters.

  相似文献   


13.
Nanostructures that feature nonreciprocal light transmission are highly desirable building blocks for realizing photonic integrated circuits. Here, a simple and ultracompact photonic‐crystal structure, where a waveguide is coupled to a single nanocavity, is proposed and experimentally demonstrated, showing very efficient optical diode functionality. The key novelty of the structure is the use of cavity‐enhanced material nonlinearities in combination with spatial symmetry breaking and a Fano resonance to realize nonreciprocal propagation effects at ultralow power and with good wavelength tunability. The nonlinearity of the device relies on ultrafast carrier dynamics, rather than the thermal effects usually considered, allowing the demonstration of nonreciprocal operation at a bit‐rate of 10 Gbit s−1 with a low energy consumption of 4.5 fJ bit−1.

  相似文献   


14.
Metasurfaces, which consist of resonant metamaterial elements in the form of two‐dimensional thin planar structures, retain great capabilities in manipulating electromagnetic wave and potential applications in modifying interaction with fluorescent molecules. The metasurfaces with magnetic responses are favorable to weakening fluorescence quenching while less investigated in controlling fluorescence. In this paper, we demonstrate control over fluorescence emission by engineering the magnetic and electric modes in plasmonic metasurfaces consisting of 45‐nm‐thick gold split‐ring‐resonators (SRRs). The fluorescence emission exhibits an enhancement factor of ∼18 and is predominantly x‐polarized with assistance of the magnetic mode excited by oblique incidence with an x‐polarized electric field. The magnetic and electric modes excited by oblique incidence with a y‐polarized electric field contribute to the rotation of emission polarization with respect to the incident polarization. The results demonstrate manipulating the interaction of fluorescent emitters with different resonant modes of the SRR‐based metasurface at the nanoscale by the polarization of incident light, providing potential applications of metasurfaces in a wide variety of areas, including optical nanosources, fluorescence spectroscopy and compact biosensors.

  相似文献   


15.
Quantitative phase imaging (QPI), a method that precisely recovers the wavefront of an electromagnetic field scattered by a transparent, weakly scattering object, is a rapidly growing field of study. By solving the inverse scattering problem, the structure of the scattering object can be reconstructed from QPI data. In the past decade, 3D optical tomographic reconstruction methods based on QPI techniques to solve inverse scattering problems have made significant progress. In this review, we highlight a number of these advances and developments. In particular, we cover in depth Fourier transform light scattering (FTLS), optical diffraction tomography (ODT), and white‐light diffraction tomography (WDT).

  相似文献   


16.
The so‐called ‘flat optics’ that shape the amplitude and phase of light with high spatial resolution are presently receiving considerable attention. Numerous journal publications seemingly offer hope for great promises for ultra‐flat metalenses with high efficiency, high numerical aperture, broadband operation… We temperate the expectation by referring to the current status of metalenses against their historical background, assessing the technical and scientific challenges recently solved and critically identifying those that still stand in the way.

  相似文献   


17.
Monocrystalline titanium dioxide (TiO2) micro‐spheres support two orthogonal magnetic dipole modes at terahertz (THz) frequencies due to strong dielectric anisotropy. For the first time, we experimentally detected the splitting of the first Mie mode in spheres of radii m through near‐field time‐domain THz spectroscopy. By fitting the Fano lineshape model to the experimentally obtained spectra of the electric field detected by the sub‐wavelength aperture probe, we found that the magnetic dipole resonances in TiO2 spheres have narrow linewidths of only tens of gigahertz. Anisotropic TiO2 micro‐resonators can be used to enhance the interplay of magnetic and electric dipole resonances in the emerging THz all‐dielectric metamaterial technology.

  相似文献   


18.
Fundamental science, as well as all communications and navigation systems, are heavily reliant on the phase, timing, and synchronization provided by low‐noise and agile frequency sources. Although research into varied photonic and electronic schemes have strived to improve upon the spectral purity of microwave and millimeter‐wave signals, the reliance on conventional electronic synthesis for tuning has resulted in limited progress in broadband sources. Using a digital‐photonic synthesizer architecture that derives its time‐base from a high‐stability optical reference cavity, we generate frequency‐agile and wideband microwave signals with exceptional dynamic range and with a fractional frequency instability of 1 × 10−15 at 1 s. The presented architecture demonstrates digitally controlled, user defined and broadband frequency tuning from RF to 100 GHz with orders‐of‐magnitude improvement in noise performance over room‐temperature electronic wide‐bandwidth synthesis schemes.

  相似文献   


19.
The progress on multi‐wavelength quantum cascade laser arrays in the mid‐infrared is reviewed, which are a powerful, robust and versatile source for next‐generation spectroscopy and stand‐off detection systems. Various approaches for the array elements are discussed, from conventional distributed‐feedback lasers over master‐oscillator power‐amplifier devices to tapered oscillators, and the performances of the different array types are compared. The challenges associated with reliably achieving single‐mode operation at deterministic wavelengths for each laser element in combination with a uniform distribution of high output power across the array are discussed. An overview of the range of applications benefiting from the quantum cascade laser approach is given. The distinct and crucial advantages of arrays over external cavity quantum cascade lasers as tunable single‐mode sources in the mid‐infrared are discussed. Spectroscopy and hyperspectral imaging demonstrations by quantum cascade laser arrays are reviewed.

  相似文献   


20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号