首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The ruthenium and iron dicarbonyl complexes Ru(MeP(CH2CH2PMe2)2)(CO)2 (1), Ru(MeP(CH2CH2CH2PMe2)2)(CO)2 (2) and Fe(MeP(CH2CH2CH2PMe2)2)(CO)2 (3) bearing strong donor tridentate phosphine ligands were prepared and fully characterised. The structures of the complexes have been established by X-ray diffraction studies. Oxidative addition of MeI to 1-3 proceeds instantaneously at room temperature and affords the corresponding octahedral cationic complexes fac,cis-[RuMe(MeP(CH2CH2PMe2)2)(CO)2]I (5a) and mer,cis-[RuMe(MeP(CH2CH2PMe2)2)(CO)2]I (5b), mer,trans-[MMe(MeP(CH2CH2CH2PMe2)2)(CO)2]I (6a (M=Ru); 7a (M=Fe)) and mer,cis-[MMe(MeP(CH2CH2CH2PMe2)2)(CO)2]I (6b (M=Ru); 7b (M=Fe)), respectively. The triphosphine preferentially adopts a facial arrangement in the case of the ethylene bridged tridentate ligand (5a) and a meridional arrangement in the case of the trimethylene bridged ligand (6a-7b). mer,cis-[RuMe(MeP(CH2CH2CH2PMe2)2)(CO)2]I (6a) undergoes CO insertion to the acetyl complex mer, trans-[Ru(COMe)(MeP(CH2CH2CH2PMe2)2)(CO)2]I (8). Attempts to produce a ketene complex from the deprotonation of 8 were not successful. The acetyl protons in 8 show very low acidity and no reaction occurred when the complex was reacted with bases such as DBU, BEMP (2-tert-Butylimino-2-diethylamino-1,3-dimethyl-perhydro-1,3,2-diazaphosphorine) or LDA.  相似文献   

2.
[RhH(CO)(PPh3)2] (1) reacts with Et3N·3HF to give the fluoro compound [RhF(CO)(PPh3)2] (2). In a comparable reaction [RhF(PEt3)3] (5) has been obtained from [RhH(PEt3)3] (3) or [RhH(PEt3)4] (4) with substoichiometric amounts of Et3N·3HF in THF. If the latter reaction is carried out in benzene, the complexes 5, cis-mer-[Rh(H)2F(PEt3)3] (6) and cis-fac-[Rh(H)2F(PEt3)3] (7) are obtained. Treatment of 5 with HCl in ether effects the generation of [RhCl(PEt3)3] (8) and the bifluoride compound [Rh(FHF)(PEt3)3] (9), which can be converted into 5 in the presence of Et3N and Cs2CO3. Treatment of 5 with HSiR2Ph (R=Ph, Me) leads to the formation of 3 and the rhodium(III) silyl complexes fac-[Rh(H)2(SiR2Ph)(PEt3)3] (10: R=Ph, 11: R=Me).  相似文献   

3.
Addition of excesses of N-heterocyclic carbenes (NHCs) IEt2Me2, IiPr2Me2 or ICy (IEt2Me2 = 1,3-diethyl-4,5-dimethylimidazol-2-ylidene; IiPr2Me2 = 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene; ICy = 1,3-dicyclohexylimidazol-2-ylidene) to [HRh(PPh3)4] (1) affords an isomeric mixture of [HRh(NHC)(PPh3)2] (NHC = IEt2Me2 (cis-/trans-2), IiPr2Me2 (cis-/trans-3), ICy (cis-/trans-4) and [HRh(NHC)2(PPh3)] (IEt2Me2(cis-/trans-5), IiPr2Me2 (cis-/trans-6), ICy (cis-/trans-7)). Thermolysis of 1 with the aryl substituted NHC, 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene (IMesH2), affords the bridging hydrido phosphido dimer, [{(PPh3)2Rh}2(μ-H)(μ-PPh2)] (8), which is also the reaction product formed in the absence of carbene. When the rhodium precursor was changed from 1 to [HRh(CO)(PPh3)3] (9) and treated with either IMes (=1,3-dimesitylimidazol-2-ylidene) or ICy, the bis-NHC complexes trans-[HRh(CO)(IMes)2] (10) and trans-[HRh(CO)(ICy)2] (11) were formed. In contrast, the reaction of 9 with IiPr2Me2 gave [HRh(CO)(IiPr2Me2)2] (cis-/trans-12) and the unusual unsymmetrical dimer, [(PPh3)2Rh(μ-CO)2Rh(IiPr2Me2)2] (13). The complexes trans-3, 8, 10 and 13 have been structurally characterised.  相似文献   

4.
Reaction of tetramethoxysilane or tetramethoxygermane with salicylic acid and morpholine (molar ratio 1:3:2) in tetrahydrofuran yielded morpholiniummer-tris[salicylato(2–)-O1,O3]silicate(mer -5) and morpholiniummer-tris[salicylato(2–)-O1,O3]germanate (mer-8), respectively. Treatment of tetramethoxysilane with 5-chlorosalicylic acid and piperidine (molar ratio 1:3:2) in tetrahydrofuran afforded piperidinium mer-tris[5-chlorosalicylato(2–)-O1,O3]silicate–ditetrahydrofuran (mer-6·2THF). Triethylammonium mer-tris[3-methylsalicylato(2–)-O1,O3]silicate (mer-7) was obtained analogously by reaction of tetramethoxysilane with three molar equivalents of 3-methylsalicylic acid and two molar equivalents of triethylamine in dichloromethane/diethyl ether. The racemic compounds mer-5, mer-6· 2THF,mer-7, and mer-8 were characterized by elemental analyses (C, H, N), single-crystal X-ray diffraction, as well as solid-state (29Si) and solution(1H, 13C, 29Si) NMR studies. The structural characterizationwas complemented by computational studies (HF studies, TZVP level) of thefac- and mer-tris[salicylato(2–)-O1,O3]silicatedianion. In addition, the behavior of mer-7 in solution was studied by VT 1HNMR experiments.  相似文献   

5.
A PNA monomer containing thymine as nucleobase (1) was synthesized, characterized and coupled to the pyrazolyl containing ligand 3,5-Me2pz(CH2)2N((CH2)3COOH)(CH2)2NHBoc (2) and to a modified cysteine S-(carboxymethyl-pentafluorphenyl)-N-[(trifluor)carbonyl]-l-cysteine methyl ester (3) yielding the bifunctional chelators 6 and 7, respectively. Reactions of 6 and 7 with the Re(I) tricarbonyl starting material [Re(CO)3(H2O)3]Br afforded the complexes fac-[Re(CO)33-6)]+ (8) and fac-[Re(CO)33-7)] (9), respectively. The identity of 8 and 9 has been established based on IR spectroscopy, elemental analysis, ESI-MS spectrometry and HPLC. The multinuclear NMR spectroscopy (1H, 13C, g-COSY, g-HSQC) has also been very informative in the case of complex 8, showing the presence of rotamers in solution. For 9 the NMR spectrum was too complex due to the presence of rotamers and diastereoisomers. The radioactive congeners of complexes 8 and 9, fac-[99mTc(CO)33-6)]+ (8a) and fac-[99mTc(CO)33-7)] (9a), have been prepared by reacting the precursor fac-[99mTc(CO)3(H2O)3]+ with the corresponding ligands being their identity established by comparing their HPLC chromatograms with the HPLC of the rhenium surrogates.  相似文献   

6.
An efficient route to the novel tridentate phosphine ligands RP[CH2CH2CH2P(OR′)2]2 (I: R = Ph; R′ = i-Pr; II: R = Cy; R′ = i-Pr; III: R = Ph; R′ = Me and IV: R = Cy; R′ = Me) has been developed. The corresponding ruthenium and iron dicarbonyl complexes M(triphos)(CO)2 (1: M = Ru; triphos = I; 2: M = Ru; triphos = II; 3: M = Ru; triphos = III; 4: M = Ru; triphos = IV; 5: M = Fe; triphos = I; 6: M = Fe; triphos = II; 7: M = Fe; triphos = III and 8: M = Fe; triphos = IV) have been prepared and fully characterized. The structures of 1, 3 and 5 have been established by X-ray diffraction studies. The oxidative addition of MeI to 1-8 produces a mixture of the corresponding isomeric octahedral cationic complexes mer,trans-(13a-20a) and mer,cis-[M(Me)(triphos)(CO)2]I (13b-20b) (M = Ru, Fe; triphos = I-IV). The structures of 13a and 20a (as the tetraphenylborate salt (21)) have been verified by X-ray diffraction studies. The oxidative addition of other alkyl iodides (EtI, i-PrI and n-PrI) to 1-8 did not afford the corresponding alkyl metal complexes and rather the cationic octahedral iodo complexes mer,cis-[M(I)(triphos)(CO)2]I (22-29) (M = Ru, Fe; triphos = I-IV) were produced. Complexes 22-29 could also be obtained by the addition of a stoichiometric amount of I2 to 1-8. The structure of 22 has been verified by an X-ray diffraction study. Reaction of 13a/b-20a/b with CO afforded the acetyl complexes mer,trans-[M(COMe)(triphos)(CO)2]I, 30-37, respectively (M = Ru, Fe; triphos = I-IV). The ruthenium acetyl complexes 30-33 reacted slowly with 2-tert-butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine (BEMP) even in boiling acetonitrile. Under the same conditions, the deprotonation reactions of the iron acetyl complexes 34-37 were completed within 24-40 h to afford the corresponding zero valent complexes 5-8. It was not possible to observe the intermediate ketene complexes. Tracing of the released ketene was attempted by deprotonation studies on the labelled species mer,trans-[Fe(COCD3)(triphos)(CO)2]I (38) and mer,trans-[Fe(13COMe)(triphos)(CO)2]I (39).  相似文献   

7.
Reaction of cis-[ReCl(NHC)(CO)4] cis-[1] (NHC = NH,NH-substituted saturated cyclic diaminocarbene) with diphosphine (2-F-C6H4)2P-CH2CH2-P(C6H4-2-F)22 yields complex fac-[Re(NHC)(2)(CO)3]Cl fac-[3]Cl. Deprotonation of the NH,NH-NHC ligand in fac-[3]Cl with KOtBu leads to an intramolecular nucleophilic aromatic substitution of one fluorine atom from each -P(C6H4-2-F) group by the NHC ring nitrogen atoms with formation of complex fac-[4]Cl bearing a facially coordinated [11]ane-P2CNHC ligand. Reaction of cis-[MnBr(NHC)(CO)4] cis-[5] (NHC = NH,NH-substituted saturated cyclic diaminocarbene) with diphosphine 2 yields complex [MnBr(NHC)(2)(CO)2] [6] without substitution of the bromo ligand and with the phosphine donors from the bidentate diphosphine occupying one cis and one trans position to the NHC donor.  相似文献   

8.
Irradiation of the title compound 1 through quartz in toluene solution at − 20°C produces cis-Mo(CO)2(PMe3)4 and OPMe3 as the major products along with lesser amounts of mer- and fac-Mo(CO)3(PMe3)3 and Mo(CO)PMe3) 5. Irradiation of 1 through Pyrex produces in addition substantial amounts of an unstable species formulated as trans-Mo (CO)2(PMe3)4.  相似文献   

9.
The complexes trans-MCl2(PMe3)4 (M = Ru, Os) react with CO and P(OMe)3 to give the mono- and disubstituted derivatives trans,mer-MCl2(PMe3)3L (L = CO, P(OMe)3) and all-trans-MCl2(PMe3)2[P(OMe)3]2, respectively. On reaction of trans-RuCl2[P(OMe)3]4 with CO and PMe3, the compounds trans,mer-RuCl2[P(OMe)3]3(CO) and trans,cis,cis-RuCl2(PMe3)2[P(OMe)3]2 are synthesized. The reduction of MCl2(PMe3)2[P(OMe)3]2 with Na/Hg in benzene or toluene via {M(PMe3)2[P(OMe)3]2} as an intermediate leads to subsequent intermolecular addition of the arene and to the aryl(hydrido)metal complexes cis,trans,cis-MH(C6H5)(PMe3)2[P(OMe)3]2 (M = Ru, Os) and MH(C6H4CH3)(PMe3)2[P(OMe)3)2 (M = Os). For M = Ru, in the presence of P(OMe)3, the ruthenium(0) compound Ru(PMe3)2(P(OMe)3]3 is formed. The hydrido(phenyl) complexes react with equimolar amounts of Br2 or I2 by elimination of benzene to produce the dihalogenometal compounds cis,trans,cis-MX2(PMe3)2[P(OMe)3]2. The reaction of trans-RuCl2(PMe3)4 with Na/Hg in the presence of PPh3 leads to the ortho-metallated complex fac-RuH(η2-C6H4PPh2)(PMe3)3, which reacts with CH3I, CS2, COS and HCl to give the compounds mer-RuI(η2-C6H4PPh2)(PMe3)3, fac-Ru(SCHS)(η2-C6H4PPh2)(PMe3)3, fac-Ru(S2CO)(CO)(PMe3)3 and RuCl2(PMe3)3, respectively. The paramagnetic 17-electron complexes [MCl2(PMe3)nL4-n]PF6 are obtained on oxidation of MCl2(PMe3)nL4-n with AgPF6. Their UV spectra exhibit a characteristic CT band. [RuCl2(PMe3)4]PF6 and [OsCl2(PMe3)4]PF6 react with CO and P(OMe)3 by reduction to form the corresponding ruthenium(II) and osmium(II) compounds MCl2(PMe3)nL4-n.  相似文献   

10.
The catalytic activities of three structural isomers of Rh2[N(C6H5)COCH3]4 in cyclopropanation reactions were surveyed. These studies showed cis cyclopropanation selectivity with bulky alkenes for 2,2-cis- and 2,2-trans-Rh2[N(C6H5)COCH3]4.  相似文献   

11.
The reaction of [NEt4]2[Re(CO)3Br3] with equimolar amount of a tridentate NSO ligand in methanol leads to the formation of neutral tricarbonyl rhenium(I) complexes of the general formula Re(CO)3(NSO), where the NSO ligand is o-C5H4N-CH2CH2-S-CH2CH(NHCOCH3)COOH (L1H), complex 1 or o-C5H4N-CH2CH2-S-C(CH3)2CH(NHCOCH3)COOH (L2H), complex 2. Both complexes have been characterized by elemental analysis and spectroscopic methods, while complex 2 has also been characterized by X-rays analysis. At technetium-99m level, the corresponding fac-[99mTc(CO)3(NSO)] complexes 3 and 4, were obtained in high yield by reacting ligands L1H or L2H with the fac-[99mTc(CO)3(H2O)3]+ precursor in water. Their structure was established by chromatographic comparison to the prototype rhenium complex using high-performance liquid chromatographic techniques.  相似文献   

12.
It has been shown that new mer-tricarbonyls mer-[Mn(CO)3L(tmed)]ClO4, (tmed = N,N,N′,N′-tetramethylethylenediamine, L = P(OMe)3, P(OEt)3, P(O-iPr)3) can be readily obtained from the reaction between fac-Mn(CO)3(tmed)Br, AgClO4, and L at room temperature, whereas at 0°C fac-isomers are produced. The opposite is the case for L = CN-t-Bu; mer-[Mn(CO)3(CN-t-Bu)(tmed)]ClO4 is observed at 0°C, and the fac-isomer is stable at 25°C.  相似文献   

13.
[Ru(CO)4PMe3] reacts with MeI to give fac-[Ru(CO)3(PMe3)(Me)I]. The latter reacts with PMe3 to give a mixture of the three isomers of cis-bis(trimethylphosphine)-cis-dicarbonyl acetyl iodide [Ru(CO)2(PMe3)2(COMe)I]. Decarbonylation of the mixture gives only the trans-bis(trimethylphosphine)-cis-dicarbonyl methyl iodide complex [Ru(CO)2(PMe3)2MeI], which was also prepared by oxidative addition of MeI to [Ru(CO)3(PMe3)2].  相似文献   

14.
The catalytic activity in asymmetric transfer hydrogenation of ketones using octahedral and half-sandwich (η5-indenyl and η6-arene) ruthenium(II) complexes containing the chiral ligand (4S)-2-[(Sp)-2-(diphenylphosphino)ferrocenyl]-4-(isopropyl)oxazoline (FcPN) has been explored. Catalytic studies with complex fac-[RuCl22(P,N)-FcPN}(PMe3)2] (1) show excellent TOF values (9600 h−1). Experiments in the presence of free FcPN, which lead to an increase in conversion rates and ee values when the catalyst is complex [Ru(η5-C9H7){κ2(P,N)-FcPN}(PPh3)][PF6] (4) have been carried out. The characterization of the new complexes mer-trans-[RuCl2{P(OMe)3}22(P,N)-FcPN}] and of the water-soluble complexes fac- and mer-trans-[RuCl2(PTA)22(P,N)-FcPN}] is also reported.  相似文献   

15.
The asymmetric, heterodonor tridentate ligand 2(S)-amino-4-phosphinobutan-1-ol, S-PNO, has been prepared from (S)-aspartic acid and some aspects of its coordination chemistry with a number of metal complexes investigated. Reaction of S-PNO with appropriate metal precursors led to the isolation of the complexes fac-Cr(CO)33-S-PNO), 1, fac-[Mn(CO)33-S-PNO)]PF6, 2, and fac-[Re(CO)33-S-PNO)]BF4, 3. The alcohol and amine donors in fac-Cr(CO)33-S-PNO) were substituted upon addition of trivinylphosphine to 1 to give the complex fac-Cr(CO)31-P-S-PNO){P(C2H3)3}2, 4. Addition of base to 4 gave a coordinated linear tridentate P3 ligand through the formation of two new chelate rings via hydrophosphination of one vinyl group on each coordinated P(C2H3)3 with the P-H bonds of the complexed S-PNO. The alcohol donor in fac-[Re(CO)33-S-PNO)]BF4 is labile and can be substituted with tris(2-fluorophenyl)phosphine, PAr3F, to give fac-[Re(CO)32-P,N-S-PNO)(PAr3F)]BF4, 5. Attempts to form a macrocyclic ligand through addition of base to fac-[Re(CO)32-P,N-S-PNO)(PAr3F)]BF4 were unsuccessful due to loss of PAr3F prior to any ring-closure. All the complexes have been fully characterised by spectroscopic and analytical techniques including a single-crystal X-ray structure analysis of 2.  相似文献   

16.
《Polyhedron》1987,6(1):111-117
Treatment of mer,cis-[MnCl(CO)2(dppm-PP′)(dppm-P)] with [Rh2Cl2(CO)4] in the presence of CO and PF6 gives [Cl(OC)2Mn(μ-dppm)2Rh(CO)2]PF6 which might have a bridging chloride ligand. Similar treatment of mer,cis-[MnBr(CO)2(dppm-PP')(dppm-P)] gave [Br(OC)2Mn(μ-dppm)2Rh(CO)2]PF6 which 31P-{1H} NMR spectroscopy showed to be a mixture of two closely related species. Treatment of mer,cis-[MnCl(CO)2(dppm-PP') (dppm-P)] with [Rh2Cl2(CO)4] at −30°C probably gave [Cl(OC)2Mn(μ-dppm)2 Rh(CO)2]Cl but this decomposes above 0°C: the corresponding dibromide was made similarly and is somewhat more stable than the dichloride. Treatment of mer,cis-[MnX(CO)2(dppm-PP')(dppm-P)] (X = Cl or Br) with [IrCl(CO)2(p-toluidine)] and CO-PF6 gave [X(OC)2Mn(μ-dppm)2Ir(CO)2]PF6. Neutral complexes of type [X(OC)2Mn (μ-dppm)2Ir(CO)X'] (X and X' = Cl or Br) are very labile and rapidly decompose to give [Ir(CO)(dppm-PP')2]+ and other (unidentified) products. Treatment of mer,cis-[MnX-(CO)2(dppm-PP')(dppm-P)] with [RhH(CO)(PPh3)3] gave [X(OC)Mn(μ-dppm)2(μ-H)(μ-CO)Rh(CO)] (X = Cl or Br). These heterobimetallic compounds generally showed broad 13P-{1H} resonances for the P nuclei bonded to Mn at ca 20°C due to some coupling with the 55Mn nucleus (I = 100% abundant), but at −30°C these resonances sharpened up due to more rapid quadrupolar relaxation at the lower temperature. NMR and IR data are given.  相似文献   

17.
The bromo-carbonyls fac-BrMn(CO)3(diphos)(diphos  Ph2P(CH2)nPPh2 for n = 1(dpm), 2(dpe), 3(dpp) and 4(dbp)) react with AgClO4 in dichloromethane solution to give the neutral fac-O3ClOMn(CO)3(diphos). The reaction of the latter complexes at room temperature with a variety of ligands L  phosphines (PR3), phosphites (P(OR)3), pyridine (Py), acetonitrile (MeCN), tetrahydrothiophene (THT) or acetone (Me2CO) leads to the cationic species fac-[Mn(CO)3(diphos)L]ClO4 (or to the [Mn(CO)4(diphos))]ClO4, when L  CO). When L is a phosphorus ligand, the cationic fac-tricarbonyls isomerize upon heating to the mer isomers, which could only be isolated by this method for diphos  dpm, the reaction being accompanied by decomposition in the other cases. UV irradiation of the mer-[Mn(CO)3(diphos)L]ClO4 in the presence of a large excess of L gives the corresponding trans-[Mn(CO)2(diphos)L2]ClO4.  相似文献   

18.
The reaction of BrMn(CO)5 with dppm in refluxing toluene gives the neutral compunds cis-cis-BrMn(CO)2(dppm)2 which has been shown by 31P NMR spectroscopy to have one dppm monodentate and the other bidendate. This complex reacts with TIPF6 in dichloromethane solution to give the salt cis-[Mn(CO)2-(dppm)2]PF6 or, if the reaction is carried out in the presence of CO, the salt mer-[Mn(CO)3(dppm)2]PF6 which also has one monodentate dppm (by 31P NMR). The cationic complex cis-[Mn(CO)2(dppm)2]+ isomerizes to the transisomer when irradiated with UV light, while heating of the latter gives back the cis-isomer. The perchlorate salts of the cation cis-[Mn(CO)2(dppm)2+ can be prepared by reacting fac-O3ClOMn(CO)3(dppm) withdppm in refluxing toluene, and trans-[Mn(CO)2(diphos)(diphos)′]+, diphos or diphos′ being dppm or dppe, by treating the fac-O3ClMn(CO)3(diphos) with dppm or dppe under UV irradiation.  相似文献   

19.
We have synthesised four rhenium carbonyl complexes of general formula [ReX(CO)3(Me2E)2] (X  Cl, Br, I, E  S, Se), and studied their temperature variable NMR spectra. All complexes were formed as the fac isomer, with the exception of [ReI(CO)3(Me2Se)2], which was obtained as a mixture of mer and fac forms. In all of these fac complexes pyramidal inversion of sulphur or selenium atoms has been demonstrated, and energy barriers to inversion have been determined either by computer simulation of complete line shapes or by coalescence temperature methods. The value of ΔG for inversion in this class of complex has been found to be about 17 kJ mol?1 higher for selenium than for sulphur, and variation of the cis halogen made no pronounced effect.  相似文献   

20.
Cooperative dual site activation of boranes by redox-active 1,3-N,S-chelated ruthenium species, mer-[PR32-N,S-(L)}2Ru{κ1-S-(L)}], (mer-2a: R = Cy, mer-2b: R = Ph; L = NC7H4S2), generated from the aerial oxidation of borate complexes, [PR32-N,S-(L)}Ru{κ3-H,S,S′-BH2(L)2}] (transmer-1a: R = Cy, transmer-1b: R = Ph; L = NC7H4S2), has been investigated. Utilizing the rich electronic behaviour of these 1,3-N,S-chelated ruthenium species, we have established that a combination of redox-active ligands and metal–ligand cooperativity has a big influence on the multisite borane activation. For example, treatment of mer-2a–b with BH3·THF led to the isolation of fac-[PR3Ru{κ3-H,S,S′-(NH2BSBH2N)(S2C7H4)2}] (fac-3a: R = Cy and fac-3b: R = Ph) that captured boranes at both sites of the κ2-N,S-chelated ruthenacycles. The core structure of fac-3a and fac-3b consists of two five-membered ruthenacycles [RuBNCS] which are fused by one butterfly moiety [RuB2S]. Analogous fac-3c, [PPh3Ru{κ3-H,S,S′-(NH2BSBH2N)(SC5H4)2}], can also be synthesized from the reaction of BH3·THF with [PPh32-N,S-(SNC5H4)}{κ3-H,S,S′-BH2(SNH4C5)2}Ru], cisfac-1c. In stark contrast, when mer-2b was treated with BH2Mes (Mes = 2,4,6-trimethyl phenyl) it led to the formation of trans- and cis-bis(dihydroborate) complexes [{κ3-S,H,H-(NH2BMes)Ru(S2C7H4)}2], (trans-4 and cis-4). Both the complexes have two five-membered [Ru–(H)2–B–NCS] ruthenacycles with κ2-H–H coordination modes. Density functional theory (DFT) calculations suggest that the activation of boranes across the dual Ru–N site is more facile than the Ru–S one.

Redox-active ruthenium complexes supported by hemilabile κ2-N,S-chelated ruthenacycles undergo unusual dual site B–H bond activation through metal–ligand cooperation with free and bulky boranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号