首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Y. Fukaya  I. Matsuda  R. Yukawa  A. Kawasuso 《Surface science》2012,606(23-24):1918-1921
We have investigated the Si(111)-√21 × √21-(Ag, Cs) superstructure using reflection high-energy positron diffraction. Rocking curve analysis based on the dynamical diffraction theory reveals that Cs atoms are located at a height of 3.04 Å above the underlying √3 × √3-Ag structure and that they form a triangular structure with a side length of 10.12 Å. The structure of the Si(111)-√21 × √21-(Ag, Cs) surface is significantly different from those of the Si(111)-√21 × √21-Ag and Si(111)-√21 × √21-(Ag, Au) surfaces, probably because of the different electronic structures of the alkali and noble metal atoms.  相似文献   

2.
Fullerene (C60) molecules on an Si(111)-(7 × 7) surface have been investigated using non-contact scanning non-linear dielectric microscopy (NC-SNDM) under an ultra-high vacuum. The topography, the interface between the C60 molecule and Si adatoms, and the internal structure of the C60 molecules were successfully investigated. For ~ 0 ML and ~ 0.4 ML coverage, both phase reversal sites and sites without phase reversal could be observed in the first order phase (θ1) image. On the other hand, for 1 ML coverage, phase reversal could not be identified. These results indicate that charge transfer only occurred from Si adatoms to C60 molecules at three-fold symmetric sites on the Si(111)-(7 × 7) surface, and the electric dipole moment is reflected in the electronic state of the C60 molecules. The internal structure of C60 molecules was clearly observed in topography by the second order amplitude (A2) feedback signal for 1 ML coverage, reflecting the LDOS originating from the t1u orbital.  相似文献   

3.
Using the morphological differences of low and high index surfaces as templates for metal growth, several low dimensional overlayer structures with novel structural and electronic properties can be formed. We present here a first report on submonolayer adsorption and residual thermal desorption studies of In adatoms on reconstructed high index Si (5 5 12)?2 × 1 surface and compare it with the observations on planar Si (111)?7 × 7 surface. The study is done by using in-situ Ultra High Vacuum surface sensitive probes like Auger Electron Spectroscopy (AES) and Low Energy Electron Diffraction (LEED). These conventional wide area techniques provide an understanding of atomistic issues involved in the evolution of the interface. We have observed an anomalous growth mode during adsorption at room temperature (RT) above 2ML, which includes adatom layering and clustering on Si (111) surface. This is also manifested during the desorption experiments on both surfaces, and the subtle differences on the two surfaces are discussed. The observation of LEED pattern during the adsorption process shows formation of different superstructural phases on Si (111)?7 × 7 surface. On Si (5 5 12) 2 × 1 surface we observe the sequential 2× (225), 2× (337) and 2× (113) facet formation during adsorption/desorption, which include quasi 1D-nanowire/chain structures. A combination of lattice strain effects, presence of step-edge barrier and quantum size effects are employed to speculate the differences in adsorption and desorption.  相似文献   

4.
The atomic structure and the saturation coverage of Cs on the Si(0 0 1)(2×1) surface at room temperature have been studied by coaxial impact collision ion scattering spectroscopy (CAICISS). For the atomic structure of saturated Cs/Si(0 0 1)(2×1) surface, it is found that Cs atoms occupy a single adsorption site at T3 on the Si(0 0 1) surface. The height of Cs atoms adsorbed at T3 site is 3.18±0.05 Å from the second layer of Si(0 0 1)(2×1) surface. The saturation coverage estimated from the measured CAICISS intensity ratio and the proposed atomic structure is found to be 0.46±0.06 ML.  相似文献   

5.
Yuki Aoki  Hiroyuki Hirayama 《Surface science》2011,605(15-16):1397-1401
Atomic H chemisorption on the Si(111)√ 3×√ 3R30°-B surface has been studied by thermal desorption spectroscopy (TDS) and scanning tunneling microscopy (STM). The B-modified Si surface is known to be inert towards adsorbates, since the surface dangling bonds of Si adatoms are passivated by B atoms sitting in sub-surface sites. However, it was found that even on a perfectly passivated surface, H is adsorbed on the surface by destroying the original √ 3 ×  3 structure. STM observations revealed that H exposure led to the creation of defects at surface sites, and H was subsequently adsorbed as Si-monohydride at these sites. H exposure also caused cluster island formation at the top surface. The islands are composed of hydrogenated amorphous Si atoms or B-hydrogen complexes.  相似文献   

6.
S. ?zkaya  M. ?akmak  B. Alkan 《Surface science》2010,604(21-22):1899-1905
The surface reconstruction, 3 × 2, induced by Yb adsorption on a Ge (Si)(111) surface has been studied using first principles density-functional calculation within the generalized gradient approximation. The two different possible adsorption sites have been considered: (i) H3 (this site is directly above a fourth-layer Ge (Si) atom) and (ii) T4 (directly above a second-layer Ge (Si) atom). We have found that the total energies corresponding to these binding sites are nearly the same, indeed for the Yb/Ge (Si)(111)–(3 × 2) structure the T4 model is slightly energetic by about 0.01 (0.08) eV/unitcell compared with the H3 model. In particular for the Ge sublayer, the energy difference is small, and therefore it is possible that the T4, H3, or T4H3 (half of the adatoms occupy the T4 adsorption site and the rest of the adatoms are located at the H3 site) binding sites can coexist with REM/Ge(111)–(3 × 2). In contrast to the proposed model, we have not determined any buckling in the Ge = Ge double bond. The electronic band structures of the surfaces and the corresponding natures of their orbitals have also been calculated. Our results for both substrates are seen to be in agreement with the recent experimental data, especially that of the Yb/Si(111)–(3 × 2) surface.  相似文献   

7.
Since more than twenty years it is known that deposition of Ag onto Si(111)–(7 × 7) leads under certain conditions to the formation of so-called “ring-like” clusters, that are particularly stable among small clusters. In order to resolve their still unknown atomic structure, we performed voltage dependent scanning tunneling microscopy (STM) measurements providing interesting information about the electronic properties of clusters which are linked with their atomic structure. Based on a structural model of Au cluster on Si(111)–(7 × 7) and our STM images, we propose an atomic arrangement for the two most stable Ag “ring-like” clusters.  相似文献   

8.
By combined investigation of STM and synchrotron PES on Ge/Si(5 5 12)-2 × 1 at 530 °C, it has been found that, in addition to the upward-relaxed surface Si atoms, a subsurface Si atom is also readily replaced by an arriving Ge atom at the initial adsorption stage. Such enhanced interdiffusion is due to a unique character of one-dimensional chain structures of the reconstructed substrate, such as π-bonded and honeycomb chains not existing on other low-index Si surfaces such as Si(001)-c(4 × 2) and Si(111)-7 × 7, applying a tensile surface stress to the neighbouring subsurface atoms. Interdiffusion of Ge having lower surface energy induces adsorption of the displaced Si atoms on the surface to form sawtooth-like facets composed of (113)/(335) and (113)/(112) with arriving Ge atoms until the surface is filled with those facets. Such displacive adsorption is the origin of high Si concentration of formed facets.  相似文献   

9.
A.H.A. Mamun  J.R. Hahn 《Surface science》2012,606(5-6):664-669
Self-assembled monolayers (SAMs) of 1-octanethiol (OT) on Au(111) surfaces, prepared at immersion temperatures between 300 K and 363 K in a sealed stainless steel chamber, were studied by scanning tunneling microscopy (STM). An oblique (√3 × √3)R30° OT-SAM structure was observed below 348 K, whereas a superstructure (3×√7)R11° covered the gold surfaces at 363 K. The highly resolved STM images permitted assignment of four symmetry-inequivalent OT molecules per 8.7 × 7.6 Å2 unit cell at 363 K. Differences in the topographical heights of the molecules were attributed to the binding of OT sulfur head groups at different adsorption sites on Au(111). This structure was not observed in stirring reflux at a high temperature, which indicates a higher pressure (> 1 atm) in the chamber may be one of crucial factors for structural transition. As the immersion temperature increased, a lower density of vacancy islands and a higher fraction of island area were observed.  相似文献   

10.
The interaction of O2 and CO2 with the Si(111)-7 × 7 surface has been studied with X-ray photoelectron spectroscopy (XPS). It was found that both O2 and CO2 molecules can readily oxidize the Si(111)-7 × 7 surface to form thin oxide films. Two oxygen species were identified in the oxide film: oxygen atoms binding to on-top sites of adatom/rest atoms with an O 1s binding energy of ~ 533 eV as well as to bridge sites of adatom/rest atom backbonds at ~ 532 eV. These two oxygen species can be interconverted thermally during the annealing process. Due to the low oxidation capability, the silicon oxide film formed by CO2 has a lower O/Si ratio than that of O2.  相似文献   

11.
The formation of Mg-induced quasi-one-dimensional atomic wires on a Si(557) surface was studied by low energy electron diffraction (LEED), scanning tunneling microscopy (STM), and first-principles calculations. The atomic wires were produced on the Si(557) surface without faceting when heated to 330 ?C. The atomic wires had a × 5 period along the wires, as observed by LEED. STM images showed the existence of three kinds of atomic wires in a unit cell: an atomic wire located at the step edge and the others on the terrace. Interestingly, alternative double and triple modulations resulting in the × 5 period was observed at the atomic wire located at the step edge. Among the variety of atomic structure models available, the one based on a honeycomb-chain-channel model, which is that of a metal/Si(111)-(3 × 1) surface, reproduced the STM images well and was relatively stable energetically.  相似文献   

12.
The adsorption of the small amounts of tantalum on Si (111)-7 × 7 reconstructed surface is investigated systematically using scanning tunneling microscopy and tunneling spectroscopy combined with first-principles density functional theory calculations. We find out that the moderate annealing of the Ta covered surface results in the formation of clusters of the butterfly-like shape. The clusters are sporadically distributed over the surface and their density is metal coverage dependent. Filled and empty state STM images of the clusters differ strongly suggesting the existence of covalent bonds within the cluster. Tunneling spectroscopy measurements reveal small energy gap, showing semiconductor-like behavior of the constituent atoms. The cluster model based on experimental images and theoretical calculations has been proposed and discussed. Presented results show that Ta joins the family of adsorbates, that are known to form magic clusters on Si (111)-7 × 7, but its magic cluster has the structural and electronic properties that are different from those reported before.  相似文献   

13.
Ge atoms have been deposited on domain-patterned clean Si(111)-(7 × 7) and oxidized Si(111)-(7 × 7) surfaces. Clustering of Ge from the deposited Ge adatoms on these two kinds of surfaces shows contrasting patterns. On the clean Si surface, clustering predominantly occurs on domain boundaries, which include step edges on two sides. This leaves small domains denuded. Ge diffusion length has been estimated from the size of these denuded domains. For large domains, additional clustering is observed within the domains. For the oxidized Si surface, the pattern formation is in sharp contrast with that for the clean Si surface. In this case the domain boundaries remain relatively empty and there is strong clustering within the domains leading to the formation of dense Ge nanoislands within the domains. This contrasting pattern formation has been explained via a reaction diffusion model.  相似文献   

14.
Ion blocking in the low keV energy range is demonstrated to be a sensitive method for probing surface adsorption sites by means of the technique of time-of-flight scattering and recoiling spectroscopy (TOF-SARS). Adsorbed atoms can block the nearly isotropic backscattering of primary ions from surface atoms in the outmost layers of a crystal. The relative adsorption site position can be derived unambiguously by simple geometrical constructs between the adsorbed atom site and the surface atom sites. Classical ion trajectory simulations using the scattering and recoiling imaging code (SARIC) and molecular dynamics (MD) simulations provide the detailed ion trajectories. Herein we present a quantitative analysis of the blocking effects produced by sub-monolayer Na adsorbed on a Cu(111) surface at room temperature. The results show that the Na adsorption site preferences are different at different Na coverages. At a coverage θ = 0.25 monolayer, Na atoms preferentially populate the fcc threefold surface sites with a height of 2.7 ± 0.1 Å above the 1st layer Cu atoms. At a lower coverage of θ = 0.10 monolayer, there is no adsorption site preference for the Na atoms on the Cu(111) surface.  相似文献   

15.
The interaction of atomic H with Ag(1 1 1)/Si(1 1 1)7 × 7 surfaces was studied by thermal desorption (TD) spectroscopy and scanning tunneling microscopy (STM) at room temperature. TD spectroscopy revealed an intense peak from mono H–Si bonds, even though the Si surface was covered by the Ag atoms. This peak was not observed from Ag-coated SiO2/Si substrates. STM observation showed no clear change of the Ag surface morphology resulting from H exposure. All these results indicate that the atomic H adsorbs at neither the Ag surfaces nor Ag bulk sites, but at the Ag/Si interface by diffusing through the Ag film.  相似文献   

16.
Wei Jie Ong  Eng Soon Tok 《Surface science》2012,606(13-14):1037-1044
Using Scanning Tunneling Microscope (STM), we show that the surface undergoes phase transformation from disordered “1 × 1” to (7 × 7) reconstruction which is mediated by the formation of Si magic clusters. Mono-disperse Si magic clusters of size ~ 13.5 ± 0.5 Å can be formed by heating the Si(111) surface to 1200 °C and quenching it to room temperature at cooling rates of at least 100 °C/min. The structure consists of 3 tetra-clusters of size ~ 4.5 ? similar to the Si magic clusters that were formed from Si adatoms deposited by Si solid source on Si(111)-(7 × 7) [1]. Using real time STM scanning to probe the surface at ~ 400 °C, we show that Si magic clusters pop up from the (1 × 1) surface and form spontaneously during the phase transformation. This is attributed to the difference in atomic density between “disordered 1 × 1” and (7 × 7) surface structures which lead to the release of excess Si atoms onto the surface as magic clusters.  相似文献   

17.
《Current Applied Physics》2010,10(2):687-692
The effect of rapid thermal annealing on the electrical and structural properties of Ni/Au Schottky contacts on n-InP have been investigated by current–voltage (IV), capacitance–voltage (CV), auger electron spectroscopy (AES) and X-ray diffraction (XRD) techniques. The Au/Ni/n-InP Schottky contacts are rapid thermally annealed in the temperature range of 200–500 °C for a duration of 1 min. The Schottky barrier height of as-deposited Ni/Au Schottky contact has been found to be 0.50 eV (IV) and 0.86 eV (CV), respectively. It has been found that the Schottky barrier height decreased with increasing annealing temperature as compared to as-deposited sample. The barrier height values obtained are 0.43 eV (IV), 0.72 eV (CV) for the samples annealed at 200 °C, 0.45 eV (IV) and 0.73 eV (CV) for those at 400 °C. Further increase in annealing temperature to 500 °C the barrier height slightly increased to 0.46 eV (IV) and 0.78 eV (CV) compared to the values obtained for the samples annealed at 200 °C and 400 °C. AES and XRD studies showed the formation of indium phases at the Ni/Au and InP interface and may be the reason for the increase in barrier height. The AFM results showed that there is no significant degradation in the surface morphology (rms roughness of 1.56 nm) of the contact even after annealing at 500 °C.  相似文献   

18.
The interaction between the metal organic precursor molecule titanium(IV) isopropoxide (TTIP) and three different surfaces has been studied: Si(111)-(7 × 7), SiOx/Si(111) and TiO2. These surfaces represent the different surface compositions encountered during TTIP mediated TiO2 chemical vapor deposition on Si(111). The surface chemistry of the titanium(IV) isopropoxide precursor and the film growth have been explored by core level photoelectron spectroscopy and x-ray absorption spectroscopy using synchrotron radiation. The resulting film morphology has been imaged with scanning tunneling microscopy. The growth rate depends on both surface temperature and surface composition. The behavior can be rationalized in terms of the surface stability of isopropoxy and isopropyl groups, confirming that growth at 573 K is a reaction limited process.  相似文献   

19.
With a scanning tunneling microscope (STM), we study the initial stage of nucleation and growth of Si on Pb monolayer covered Si(111) surfaces. The Pb monolayer can work as a good surfactant for growth of smooth Si thin films on the Si(111) substrate. We have found that nucleation of two-dimensional (2D) Pb-covered Si islands occurs only when the substrate temperature is high enough and the Si deposition coverage is above a certain coverage. At low deposition coverages or low substrate temperatures, deposited Si atoms tend to self-assemble into a certain type of Si atomic wires, which are immobile and stable against annealing to ~ 200 °C. The Si atomic wires always appear as a double bright-line structure with a separation of ~ 9 Å between the two lines. After annealing to ~ 200 °C for a period of time, some sections of Si atomic wires may decompose, meanwhile the existing 2D Pb-covered Si islands grow laterally in size. The self-assembly of Si atomic wires indicate that single Si adatoms are mobile at the Pb-covered Si(111) surface even at room temperature. Further study of this system may reveal the detailed atomic mechanism in surfactant-mediated epitaxy.  相似文献   

20.
The adsorption structure of nitric oxide (NO) on Ir(111) was studied by thermal desorption spectroscopy (TDS) and dynamical analyses of low-energy electron diffraction (LEED). At the saturation coverage at about 100 K, a 2 × 2 pattern was observed by LEED and two peaks appeared at 365 and 415 K in TDS. No change in the LEED IV curves was observed by annealing at 280 K, which means that the NO-saturated surface was retained at this temperature. On the contrary, partial desorption and changes of the LEED IV curves were observed by annealing at 360 K. Combined with previous vibrational studies, it is suggested that one adsorption species is not affected, while another species is partially desorbed and the rest of them are dissociated by annealing at 360 K. Dynamical analyses of LEED were performed for the 280 K-annealed and the 360 K-annealed surfaces, which correspond to the NO-saturated and the NO-dissociated Ir(111) surfaces, respectively. These revealed that NO occupies the atop, fcc-hollow and hcp-hollow sites (atop-NO + fcc-NO + hcp-NO) for the NO-saturated Ir(111) surface with the saturation coverage of 0.75 ML. For the 360 K-annealed surface, the atop-NO is not affected but the fcc-NO and the hcp-NO are partially desorbed as NO and partially dissociated to N and O, both of which occupy the fcc-hollow site on the surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号