首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Diselenide‐containing polymers are facilely synthesized from polymers prepared by atom transfer radical polymerization (ATRP). Benefiting from the ATRP technology, this protocol provides a flexible route for controlling the polymer structure, which allows for a great variety of architectures of selenium‐containing polymer materials for applications in various fields. The oxidative and reductive responsive behavior of the obtained diselenide‐containing polymers is also investigated.

  相似文献   


2.
A new approach to stabilize carbon nanotubes (CNTs) in aqueous solution with a reduction‐responsive water‐soluble polymer is reported. The novel polymer synthesized by a controlled radical polymerization is functionalized with pendant pyrene groups capable of adhering to the surface of CNTs through π–π noncovalent interactions, and labeled with disulfide linkages to exhibit reduction‐responsive cleavage. Upon the cleavage of junction disulfide linkages in a reducing environment, water‐soluble polymers are shed, retaining clean CNT surfaces for electrochemical catalytic reactions.

  相似文献   


3.
The controlled synthesis of poly(oligo(2‐ethyl‐2‐oxazoline)methacrylate) (P(OEtOxMA)) polymers by Cu(0)‐mediated polymerization in water/methanol mixtures is reported. Utilizing an acetal protected aldehyde initiator for the polymerization, well‐defined polymers are synthesized (>99% conversion, Ð < 1.25) with subsequent postpolymerization deprotection resulting in α‐aldehyde end group containing comb polymers. These P(OEtOxMA) are subsequently site‐specifically conjugated, via reductive amination, to a dipeptide (NH2‐Gly‐Tyr‐COOH) as a model peptide, prior to conjugation to the functional peptide oxytocin. The resulting oxytocin conjugates are evaluated in comparison to poly(oligo(ethylene glycol) methyl ether methacrylate) combs synthesized in the same manner for potential effects on thermal stability in comparison to the native peptide.

  相似文献   


4.
Binary polystyrene and poly(4‐vinylpyridine) mixed grafted silica nanoparticles (PSt/P4VP‐g‐SNPs) are fabricated using CuI‐catalyzed azide‐alkyne Huisgen cycloaddition (CuAAC) via grafting‐to method. Azide‐terminated PSt and P4VP are synthesized via post‐ and pre‐atom transfer radical polymerization modification, respectively. Then, the polymers are simultaneously anchored onto alkyne‐modified SNPs by CuAAC yielding mixed brushes as shown by Raman spectroscopy, dynamic light scattering, and thermogravimetric analysis. To the best of our knowledge, this is the first report of simultaneously grafting two distinct polymer chains to synthesize mixed grafted silica nanoparticles using CuAAC technique via grafting‐to method.

  相似文献   


5.
The design flexibility that polymeric micelles offer in the fabrication of optical nanosensors for ratiometric pH measurements is investigated. pH nanosensors based on polymeric micelles are synthesized either by a mixed‐micellization approach or by a postmicelle modification strategy. In the mixed‐micellization approach, self‐assembly of functionalized unimers followed by shell cross‐linking by copper‐catalyzed azide‐alkyne cycloaddition (CuAAC) results in stabilized cRGD‐functionalized micelle pH nanosensors. In the postmicelle modification strategy, simultaneous cross‐linking and fluorophore conjugation at the micelle shell using CuAAC results in a stabilized micelle pH nanosensor. Compared to the postmicelle modification strategy, the mixed‐micellization approach increases the control of the overall composition of the nanosensors. Both approaches provide stable nanosensors with similar pKa profiles and thereby nanosensors with similar pH sensitivity.

  相似文献   


6.
An efficient metal‐free homodifunctional bimolecular ring‐closure method is developed for the formation of cyclic polymers by combining reversible addition‐fragmentation chain transfer (RAFT) polymerization and self‐accelerating click reaction. In this approach, α,ω‐homodifunctional linear polymers with azide terminals are prepared by RAFT polymerization and postmodification of polymer chain end groups. By virtue of sym‐dibenzo‐1,5‐cyclooctadiene‐3,7‐diyne (DBA) as small linkers, well‐defined cyclic polymers are then prepared using the self‐accelerating double strain‐promoted azide–alkyne click (DSPAAC) reaction to ring‐close the azide end‐functionalized homodifunctional linear polymer precursors. Due to the self‐accelerating property of DSPAAC ring‐closing reaction, this novel method eliminates the requirement of equimolar amounts of telechelic polymers and small linkers in traditional bimolecular ring‐closure methods. It facilitates this method to efficiently and conveniently produce varied pure cyclic polymers by employing an excess molar amount of DBA small linkers.

  相似文献   


7.
Three‐ and four‐arm star shaped polymers, as well as diblock copolymers, are synthesized via acyclic diene metathesis (ADMET) polymerization. This is accomplished by using an asymmetric α,ω‐diene containing a terminal double bond and an acrylate, which is polymerized in the presence of multifunctional acrylates as selective and irreversible chain transfer agents using Hoveyda‐Grubbs second generation catalyst. High cross‐metathesis selectivities are achieved at low temperatures enabling good control over molecular weights. Furthermore, additional polyethyleneglycol (PEG) blocks are attached to these polymers via Heck coupling of the acrylate end‐groups of these polymers with aryl iodide functionalized PEG, obtaining three‐ and four‐arm star shaped di‐ and triblock copolymers with molecular weights up to 31 kDa.

  相似文献   


8.
A Mitsunobu reaction of trifluoroacetamide (TFA amide) and alcohols is used in a post‐polymerization modification process. The reaction is conducted on polystyrene (PSt) bearing 20 mol% TFA amide groups with 4‐methyl benzyl alcohol in the presence of a N,N,N′,N′‐tetramethylazodicarboxamide and tributylphosphine as mediators. The Mitsunobu reaction on polymer proceeds efficiently, as confirmed by the obvious precipitation generation during the reaction and the conversion of TFA amide moiety reached 88.6% confirmed by 19F NMR measurement, yielding PSt bearing tertiary TFA amide moieties. The obtained polymers featuring tertiary TFA amide moieties are deprotected in the presence of tetrabutylammonium hydroxide as a base to afford corresponding polymers featuring functionalized polyamine scaffolds with 92.5% conversion. In addition, the precise structural assignment is proven by synthesis and analysis of the model monomeric compounds and the respective model polymers.

  相似文献   


9.
The synthesis of thiol‐functionalized long‐chain highly branched polymers (LCHBPs) has been accomplished in combination of ring‐opening metathesis polymerization (ROMP) and thiol‐Michael addition click reaction. A monotelechelic polymer with a terminal acrylate and many pendent thiol groups is first prepared through adding an internal cis‐olefin terminating agent to the reaction mixture immediately after the completion of the living ROMP, and then utilized as an ABn‐type macromonomer in subsequent thiol‐ene reaction between acrylate and thiol, yielding LCHBPs as the reaction time prolonged. Au nanoparticles are then covalently conjugated onto the surface of thiol‐functionalized LCHBP to fabricate novel hybrid nanostructures, which is shown as one interesting application of such functionalized metathesis polymers. This facile approach can be extended toward the fabrication of novel nanomaterials with sophisticated structures and tunable multifunctionalities.

  相似文献   


10.
For most stimuli‐responsive polymer materials (SRPMs), such as polymer gels, micelles, and brushes, the responsive mechanism is based on the solubility or compatibility with liquid media. That basis always results in distorting or collapsing the material's appearance and relies on external liquids. Here, a novel kind of SRPMs is proposed. Unlike most SRPMs, liquid is stored within special domains rather than expelled, so it is deforming‐free and relying on no external liquid, which is referred to as self‐storage SRPMs (SS‐SRPMs). The facile and universal route to fabricate SS‐SRPMs allows for another novel family of SRPMs. Furthermore, it is validated that SS‐SRPMs can drastically respond to outside temperature like switchers, especially for optical and electrochemical responses. Those features hold prospects for applications in functional devices, such as smart optical lenses or anti‐self‐discharge electrolytes for energy devices.

  相似文献   


11.
The synthesis of novel luminescent polymer containing p‐phenylene‐ethynylene and 9,12‐linked o‐carborane units alternately in the main chain is reported. The obtained polymer exhibits intense blue photoluminescence, providing the first insights into the optical properties of a 9,12‐disubstituted o‐carborane dye.  π‐Conjugated substituent at 9 and/or 12‐positions in o‐carborane is electrically independent, and both the HOMO and the LUMO levels slightly increase, whereas LUMO of the π‐conjugated substituent at 1 and/or 2‐positions in o‐carborane decrease.  Thus, it is deduced that polymers consisting of the 9,12‐linked o‐carborane unit are able to be applied as light‐emitting materials.

  相似文献   


12.
Molecular bottle‐brush functionalized single‐walled carbon nanotubes (SWCNTs) with superior dispersibility in water are prepared by a one‐pot synthetic methodology. Elongating the main‐chain and side‐chain length of molecular bottle‐brushes can further increase SWCNT dispersibility. They show significant enhancement of SWCNT dispersibility up to four times higher than those of linear molecular functionalized SWCNTs.

  相似文献   


13.
A simple polymerization of trichlorophosphoranimine (Cl3P = N−SiMe3) mediated by functionalized triphenylphosphines is presented. In situ initiator formation and the subsequent polymerization progress are investigated by 31P NMR spectroscopy, demonstrating a living cationic polymerization mechanism. The polymer chain lengths and molecular weights of the resulting substituted poly(organo)phosphazenes are further studied by 1H NMR spectroscopy and size exclusion chromatography. This strategy facilitates the preparation of polyphosphazenes with controlled molecular weights and specific functional groups at the α‐chain end. Such well‐defined, mono‐end‐functionalized polymers have great potential use in bioconjugation, surface modification, and as building blocks for complex macromolecular constructs.

  相似文献   


14.
Wide‐angle X‐ray scattering (WAXS) and temperature‐dependent Fourier transform infrared spectroscopy (FTIR) spectroscopy are used to study hydrogen bonding interactions of a hydroxyl‐functionalized polyethylene (PE) prepared by acyclic diene metathesis (ADMET) chemistry. The hydroxyl polymer exhibits an orthorhombic unit cell structure with characteristic reflection planes at (110) and (200), comparable to pure crystalline PE. These data unequivocally demonstrate that the OH branch is excluded from the PE lamellae. Furthermore, the polymer melts 100 °C higher than all previous analogous polymers possessing precision placed long aliphatic branches that also are excluded from PE lamellae. Temperature‐dependent FTIR spectroscopy from ambient to 150 °C, followed by cooling to 125 °C supports exclusion of the hydroxyl group from the crystalline lattice. It is concluded that these hydroxyl groups form stable physical networks in the amorphous region via hydrogen bonding and are important for the overall morphology of such polymers.

  相似文献   


15.
The controlled folding of a single polymer chain is for the first time realized by metal‐ complexation. α,ω‐Bromine functional linear polymers are prepared via activators regenerated by electron transfer (ARGET) ATRP (,SEC = 5900 g mol−1, Đ = 1.07 and 12 000 g mol−1, Đ = 1.06) and the end groups of the polymers are subsequently converted to azide functionalities. A copper‐catalyzed azide–alkyne cycloaddition (CuAAC) reaction is carried out in the presence of a novel triphenylphosphine ligand and the polymers to afford homotelechelic bis‐triphenylphosphine polymeric‐macroligands (MLs) (,SEC = 6600 g mol−1, Đ = 1.07, and 12 800 g mol−1, Đ = 1.06). Single‐chain metal complexes (SCMCs) are formed in the presence of Pd(II) ions in highly diluted solution at ambient temperature. The results derived via 1H and 31P{1H} NMR experiments, SEC, and DLS unambiguously evidence the efficient formation of SCMCs via metal ligand complexation.

  相似文献   


16.
Thermoresponsive linear polymers and their corresponding aggregates or nanogels typically show similar thermoresponsive profiles. In this study, the authors demonstrate reversible chemical switching between linear polymers and their cross‐linked nanogels. The linear polymers exhibit sharp thermal transitions typical of common thermoresponsive polymers but the cross‐linked nanogels exhibit “linear” thermal transitions over a relatively broad temperature range. The reversible switching between these two different polymer architectures with distinct thermoresponses represents a unique example of how the responsive properties of smart polymers can be significantly manipulated via polymer architecture engineering.

  相似文献   


17.
Polyacrylamides containing pendant aminobisphosphonate groups are synthesized via reversible addition‐fragmentation chain transfer (RAFT) polymerization and a multicomponent postpolymerization functionalization reaction. A Moedritzer–Irani reaction installs the phosphonic acid groups on well‐defined, RAFT‐generated polymers bearing a pendant amine. An alternate route to the same materials is developed utilizing a three‐component Kabachnik–Fields reaction and subsequent dealkylation. Kinetics of the RAFT polymerization of the polymer precursor are studied. Successful functionalization is demonstrated by NMR and FTIR spectroscopy and elemental analysis of the final polymers.

  相似文献   


18.
A new and easy method of stimuli‐triggered growth and removal of a bioreducible nanoshell on nanoparticles is reported. The results show that pH or temperature could induce the aggregation of disulfide‐contained branched polymers at the surface of nanoparticles; subsequently, the aggregated polymers could undergo intermolecular disulfide exchange to cross‐link the aggregated polymers, forming a bioreducible polymer shell around nanoparticles. When these nanoparticles with a polymer shell are treated with glutathione (GSH) or d,l ‐dithiothreitol (DTT), the polymer shell could be easily removed from the nanoparticles. The potential application of this method is demonstrated by easily growing and removing a bioreducible shell from liposomes, and improvement of in vivo gene transfection activity of liposomes with a bioreducible PEG shell.

  相似文献   


19.
An ultraviolet (UV)‐cleavable bottlebrush polymer is synthesized using the “grafting‐onto” strategy by combining living radical polymerization and copper‐catalyzed azide‐alkyne cycloaddition (CuAAC). In this approach, reversible addition‐fragmentation chain transfer polymerization is used to prepare a poly(methylacrylate) backbone with azide side groups, while atom transfer radical polymerization is employed to prepare polystyrene (PS) side chains end‐functionalized with o‐nitrobenzyl (UV‐cleavable) propargyl groups. CuAAC is then used to graft PS side chains onto the polymer backbone, producing the corresponding bottlebrush polymers with UV‐cleavable PS side chains. The formation of the bottlebrush polymer is characterized by 1H nuclear magnetic resonance spectroscopy, gel permeation chromatography (GPC), and Fourier transform infrared spectroscopy. The cleavage behavior of the bottlebrush polymer is monitored in tetrahydrofuran solution under UV irradiation by GPC and viscosity measurements.

  相似文献   


20.
A thiofunctional thiazolidine is introduced as a new low‐molar‐mass building block for the introduction of cysteine residues via a thiol‐ene reaction. Allyl‐functional polyglycidol (PG) is used as a model polymer to demonstrate polymer‐analogue functionalization through reaction with the unsaturated side‐chains. A modified trinitrobenzenesulfonic acid (TNBSA) assay is used for the redox‐insensitive quantification and a precise final cysteine content can be predetermined at the polymerization stage. Native chemical ligation at cysteine‐functional PG is performed as a model reaction for a chemoselective peptide modification of this polymer. The three‐step synthesis of the thiofunctional thiazolidine reactant, together with the standard thiol‐ene coupling and the robust quantification assay, broadens the toolbox for thiol‐ene chemistry and offers a generic and straightforward approach to cysteine‐functional materials.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号