首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Molecular bottle‐brush functionalized single‐walled carbon nanotubes (SWCNTs) with superior dispersibility in water are prepared by a one‐pot synthetic methodology. Elongating the main‐chain and side‐chain length of molecular bottle‐brushes can further increase SWCNT dispersibility. They show significant enhancement of SWCNT dispersibility up to four times higher than those of linear molecular functionalized SWCNTs.

  相似文献   


2.
Single‐chain nanoparticles can be obtained via single‐chain folding assisted by intramolecular crosslinking reversibly or irreversibly. Single‐chain folding is also an efficient route to simulate biomacromolecules. In present study, poly(N‐hydroxyethylacrylamide‐co‐4′‐(propoxy urethane ethyl acrylate)‐2,2′:6′,2″‐terpyridine) (P(HEAm‐co‐EMA‐Tpy)) is synthesized via reversible addition fragmentation chain transfer polymerization. Single‐chain folding and intramolecular crosslinking of P(HEAm‐co‐EMA‐Tpy) are achieved via metal coordination chemistry. The intramolecular interaction is characterized on ultraviolet/visible spectrophotometer (UV–vis spectroscopy), proton nuclear magnetic resonance (1H NMR), and differential scanning calorimetry (DSC). The supramolecular crosslinking mediated by Fe2+ plays an important role in the intramolecular collapsing of the single‐chain and the formation of the nanoparticles. The size and morphology of the nanoparticles can be controlled reversibly via metal coordination chemistry, which can be characterized by dynamic light scattering (DLS), transmission electron microscope (TEM), and atomic force microscope (AFM).

  相似文献   


3.
By anchoring alkynylplatinum(II) terpyridine molecular tweezer/pyrene recognition motif on the chain‐ends of telechelic polycaprolactone, high‐molecular‐weight supramolecular polymers have been successfully constructed via noncovalent chain extension, which demonstrate fascinating rheological and thermal properties. Moreover, the resulting assemblies exhibit interesting temperature‐ and solvent‐responsive behaviors, which are promising for the development of adaptive functional materials.

  相似文献   


4.
Cationic imidazolium‐functionalized polyethylene is accessible by insertion copolymerization of ethylene and allyl imidazolium tetrafluoroborate (AIm‐BF4) with phosphinesulfonato palladium(II) catalyst precursors. Imidazolium‐substituted repeat units are incorporated into the main chain and the initiating saturated chain end of the linear polymers, rather than the terminating unsaturated chain end. The counterion of the allyl imidazolium monomer is decisive, with the chloride analogue (AIm‐Cl) no polymerization is observed. Stoichiometric studies reveal the formation of an inactive chloride complex from the catalyst precursor. An effect of moderate densities (0.5 mol%) of ionic groups on the copolymers' physical properties is exemplified by an enhanced wetting by water.

  相似文献   


5.
Self‐assembled peptide/protein nanofibers are valuable 1D building blocks for creating complex structures with designed properties and functions. It is reported that the self‐assembly of silk‐elastin‐like protein polymers into nanofibers or globular aggregates in aqueous solutions can be modulated by tuning the temperature of the protein solutions, the size of the silk blocks, and the charge of the elastin blocks. A core‐sheath model is proposed for nanofiber formation, with the silk blocks in the cores and the hydrated elastin blocks in the sheaths. The folding of the silk blocks into stable cores—affected by the size of the silk blocks and the charge of the elastin blocks—plays a critical role in the assembly of silk‐elastin nanofibers. Furthermore, enhanced hydrophobic interactions between the elastin blocks at elevated temperatures greatly influence the nanoscale features of silk‐elastin nanofibers.

  相似文献   


6.
Endowing unimolecular soft nanoobjects with biomimetic functions is attracting significant interest in the emerging field of single‐chain technology. Inspired by the compartmentalized structure and polymerase activity of metalloenzymes, copper‐containing compact nanoglobules have been designed, synthesized, and characterized endowed with metalloenzyme mimicking characteristics toward controlled synthesis of water‐soluble polymers and thermoresponsive hydrogels. When compared to metalloenzymes, artificial nanoobjects endowed with metalloenzyme mimicking characteristics offer increased stability against thermal changes and reduced degradability by hydrolytic enzymes.

  相似文献   


7.
This study presents the synthesis and characterization of zwitterionic core–shell hybrid nanoparticles consisting of a core of iron oxide multicore nanoparticles (MCNPs, γ‐Fe2O3) and a shell of sultonated poly(2‐vinylpyridine‐grad‐acrylic acid) copolymers. The gradient copolymers are prepared by reversible addition fragmentation chain transfer polymerization of 2‐vinylpyridine (2VP), followed by the addition of tert‐butyl acrylate and subsequent hydrolysis. Grafting of P(2VP‐grad‐AA) onto MCNP results in P(2VP‐grad‐AA)@MCNP, followed by quaternization using 1,3‐propanesultone—leading to P(2VPSgrad‐AA)@MCNP with a zwitterionic shell. The resulting particles are characterized by transmission electron microscopy, dynamic light scattering, and thermogravimetric analysis measurements, showing particle diameters of ≈70–90 nm and an overall content of the copolymer shell of ≈10%. Turbidity measurements indicate increased stability toward secondary aggregation after coating if compared to the pristine MCNP and additional cytotoxicity tests do not reveal any significant influence on cell viability.

  相似文献   


8.
Polymeric nanosheets organized by molecular building blocks bearing specifically oriented reactive groups provide abundant and versatile strategies for tailoring structure and chemical functionality periodically over extended length scales that complement graphene. Here we report the bulk synthesis of free‐standing polymeric nanosheets via spatially confined polymerization from an elaborate 2D supramolecular system composed of two liquid‐crystalline lamellar bilayer membranes of a self‐assembled nonionic surfactant—dodecylglyceryl itaconate (DGI)—sandwiched by a water layer. By employing a covalent polymerization on the lamellar bilayer membranes, single‐bilayer‐thick (4.2 nm), and large area (greater than 100 μm2) polymeric nanosheets of bilayer membranes are achieved. The polymeric nanosheets could serve as a well‐defined 2D platform for post‐functionalization for producing advanced hybrid materials by introducing the reactions on the hydroxyl groups at the head of DGI on the outer surfaces.

  相似文献   


9.
Diarylbutadiyne derivatives are ideal monomers for providing the π‐electron‐conjugated system of polydiacetylenes (PDAs). The geometrical parameters for diacetylene topochemical polymerization are known. However, control of the molecules under these parameters is yet to be addressed. This work shows that by simply tailoring diarylbutadiyne with amide side‐chain substituents, the arrangement of the substituents and the resulting hydrogen bond framework allows formation of π‐electron‐conjugated PDA.

  相似文献   


10.
The kinetics of mechanochemical chain scission of poly(phthalaldehyde) (PPA) are investigated. Ultrasound‐induced cavitation is capable of causing chain scission in the PPA backbone that ultimately leads to rapid depolymerization of each resulting polymer fragment when above the polymer's ceiling temperature (Tc). An interesting feature of the mechanochemical breakdown of PPA is that “half‐chain” daughter fragments are not observed, since the depolymerization is rapid following chain scission. These features facilitate the determination of rate constants of activation for multiple molecular weights from a single sonication experiment. Additionally, the degradation kinetics are modified with chain‐end trapping agents through variation of the nature and amount of small molecule nucleophile or electrophile.

  相似文献   


11.
Pillararene‐containing thermoresponsive polymers are synthesized via reversible addition–fragmentation chain transfer polymerization using pillararene derivatives as the effective chain transfer agents for the first time. These polymers can self‐assemble into micelles and form vesicles after guest molecules are added. Furthermore, such functional polymers can be further applied to prepare hybrid gold nanoparticles, which integrate the thermoresponsivity of polymers and molecular recognition of pillararenes.

  相似文献   


12.
Inspired by the multifunctionality of vitamin D‐binding protein and the multiple transient‐binding behavior of some intrinsically disordered proteins (IDPs), a polymeric platform is designed, prepared, and characterized for combined delivery of dermal protective and anticancer bioactive cargos on the basis of artificial single‐chain nano‐objects mimicking IDPs. For the first time ever, simultaneous delivery of folic acid or vitamin B9, and hinokitiol, a relevant natural bioactive compound that exhibits anticancer activity against human malignant melanoma cells, from these multidirectionally self‐assembled unimolecular nanocarriers is illustrated.

  相似文献   


13.
An acceleration effect and selective monomer addition during RAFT copolymerization of the oppositely‐charged ionic monomers in dilute aqueous solution at 25 °C are reported. The reaction is conducted using a non‐ionic water‐soluble polymer as a macromolecular chain transfer agent under visible light irradiation. A fast iterative polymerization can be induced, even in dilute solution, by the favorable ionic interactions and in situ self‐assembly of zwitterionic growing chains. Selelctive monomer addition is achieved in the statistical copolymerization due to the ion‐pairing of the oppositely‐charged monomers, such as precisely the same reaction rates at a 1:1 of monomer ratio, otherwise a faster reaction of the minor monomer component over the major one. These behaviors open up an avenue towards the rapid synthesis of sequence‐controlled zwitterionic polyelectrolytes that can satisfy the demands of emerging biological applications.

  相似文献   


14.
Herein, for rate‐tunable controlled release, the authors report a new facile method to prepare multiresponsive amphiphilic supramolecular diblock copolymers via the cooperative complexation between a water‐soluble pillar[10]arene and paraquat‐containing polymers in water. This supramolecular diblock copolymer can self‐assemble into multiresponsive polymeric micelles at room temperature in water. The resultant micelles can be further used in the controlled release of small molecules with tunable release rates depending on the type of single stimulus and the combination of various stimuli.

  相似文献   


15.
A linear supramolecular polymer based on the self‐assembly of an easily available copillar[5]arene monomer is efficiently prepared, which is evidenced by the NMR spectroscopy, viscosity measurement, and DOSY experiment. The single‐crystal X‐ray analysis reveals that the polymerization of the AB‐type monomer is driven by the quadruple CH•••π interactions and one CH•••O interaction.

  相似文献   


16.
Anion recognition between the triurea receptor and phosphate anion is demonstrated as the cross‐linkage to build supramolecular polymer gels for the first time. A novel multi‐block copolymer ( 3) is designed to have functional triurea groups as cross‐linking units along the polymer main chain. By virtue of anion coordination between the triurea receptor and phosphate anion with a binding mode of 2:1, supramolecular polymer gels are then prepared based on anion recognition using 3 as the building block.

  相似文献   


17.
The surface of polyacrylonitrile (PAN) film is treated with ethyleneamines (EDA) in a simple chemical vapor phase reaction. Successful introduction of amine functional groups on the cyano group of PAN backbone is verified by FT‐IR and NMR measurements. Further UV‐vis and photoluminescence analyses show a red shift of the emission peak after repeated EDA treatment, which might be attributed to the formation of imine conjugation from newly formed carbon‐nitrogen bonds on the PAN backbone. Further confocal laser scanning microscopy reveals that selective patterning of EDA on PAN films is possible via local polydimethylsiloxane masking. The results indicate that both chemical and optical patterning on PAN film can be realized via a single reaction and show the potential of this novel methodology in selective patterning.

  相似文献   


18.
Hierarchical semicrystalline block copolymer nanoparticles are produced in a segmented gas‐liquid microfluidic reactor with top‐down control of multiscale structural features, including nanoparticle morphologies, sizes, and internal crystallinities. Control of multiscale structure on disparate length scales by a single control variable (flow rate) enables tailoring of drug delivery nanoparticle function including release rates.

  相似文献   


19.
A novel procedure has been developed for the Gilch reaction leading to poly(p‐phenylene vinylenes) (PPVs). In the first step, selective activation of the starting material is achieved at low temperature. Subsequently, controlled chain growth is induced by lighting the α‐halo‐p‐quinodimethane monomer. In contrast to the thermal Gilch polymerization, the photoinduced process allows adjusting crucial parameters such as intensity and energy of light. The progress of PPV formation can be followed visually or by in situ UV–vis spectroscopy. If the polymers are formed under appropriate conditions, they show very high molar masses, polydispersities in the common range, and higher constitutional homogeneity than thermally grown PPVs.

  相似文献   


20.
Described herein is a new printing method—direct writing of conducting polymers (CPs)—based on pipette‐tip localized continuous electrochemical growth. A single barrel micropipette containing a metal wire (Pt) is filled with a mixture of monomer, supporting electrolyte, and an appropriate solvent. A droplet at the tip of the pipette contacts the substrate, which becomes the working electrode of a micro‐electrochemical cell confined to the tip droplet and the pipette. The metallic wire in the pipette acts as both counter and reference electrode. Electropolymerization forms the CP on the working electrode in a pattern controlled by the movement of the pipette. In this study, various width poly(pyrrole) 2D and 3D structures are extruded and characterized in terms of microcyclic voltammetry, Raman spectroscopy, and scanning electron microscopy.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号