首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S.J. Alas  L. Vicente 《Surface science》2010,604(11-12):957-964
The kinetics of NO desorption and its decomposition on Rh(111) surfaces have been simulated by using a dynamic Monte Carlo method. During the simulations, we used a triangular lattice that mimics the Rh(111) phase. NO decomposition was studied at low pressure and temperatures ranging from 120 to 1000 K. The present analysis incorporates recent experimental evidence showing that N2 production occurs either from the classical N + N recombination step or by the formation and successive decay of an (N–NO)* intermediate species. Moreover, N2 and NO desorption rates are enhanced and the NO dissociation rate is inhibited by coadsorbed NO, N, and O species as nearest neighbors. These effects are taken into account in this study, along with the experimental adsorption, desorption, dissociation, and diffusion rates of the reactants. Our simulations are consistent with the experimental results of TPD spectra and can explain the formation of two peaks, δ-N2 and β-N2, as a natural consequence of the reaction mechanism herein proposed. Comparisons with different mechanisms used by other authors are also made.  相似文献   

2.
A sharp change in the N2 emission channel from N2O(a)  N2(g) + O(a) to N(a) + N(a)  N2(g) has been found at around 500 K in a steady-state NO + D2 reaction over stepped Pd(211) = [(S)3(111) × (100)] by means of angle-resolved desorption. The desorbing N2 is highly collimated at around 30° off normal toward the step-down direction below about 500 K due to the intermediate N2O decomposition, whereas, above 500 K, the near normally directed desorption due to the recombination of N(a) is relatively enhanced. The N2O decomposition channel is promoted when the reaction is carried out with hydrogen (deuterium) and the channel change is accelerated by quick changes of the amounts of surface hydrogen and oxygen (or NO(a)) into the opposite directions, and enhanced nitrogen removal as ammonia on the resultant hydrogen-rich surface. In the steady-state NO + CO reaction, the N2 emission channel gradually changes above 500 K toward recombination. A model for the off-normal N2 emission is briefly described.  相似文献   

3.
We have studied desorption of 13CO and H2O and desorption and reaction of coadsorbed, 13CO and H2O on Au(310). From the clean surface, CO desorbs mainly in, two peaks centered near 140 and 200 K. A complete analysis of desorption spectra, yields average binding energies of 21 ± 2 and 37 ± 4 kJ/mol, respectively. Additional desorption states are observed near 95 K and 110 K. Post-adsorption of H2O displaces part of CO pre-adsorbed at step sites, but does not lead to CO oxidation or significant shifts in binding energies. However, in combination with electron irradiation, 13CO2 is formed during H2O desorption. Results suggest that electron-induced decomposition products of H2O are sheltered by hydration from direct reaction with CO.  相似文献   

4.
Ignition energies for short duration (<50 ns) spark discharges were measured for undiluted and nitrogen-diluted H2-N2O mixtures of equivalence ratios ? = 0.15 and 0.2, dilution of 0% and 20% N2, and initial pressures of 15–25 kPa. The ignition events were analyzed using statistical tools and the probability of ignition versus spark energy density (spark energy divided by the spark length) was obtained. The simple cylindrical ignition kernel model was compared against the results from the present study. Initial pressure has a significant effect on the width of the probability distribution, ranging from a broad (P = 15 kPa) to a narrow (P = 25 kPa) probability distribution indicating that the statistical variation of median spark energy density increases as initial pressure of the mixture decreases. A change in the equivalence ratio from 0.15 to 0.2 had a small effect on the median spark energy density. The addition of 20% N2 dilution caused a significant increase in the median spark energy density when compared to no dilution. The extrapolation of the present results to atmospheric pressure, stoichiometric H2-N2O indicates that the electrostatic discharge ignition hazards are comparable to or greater than H2-O2 mixtures.  相似文献   

5.
The layered nanocrystalline NH4MnPO4·H2O was obtained by grinding MnSO4·H2O and (NH4)3PO4·3H2O in the presence of surfactant PEG-400 via a solid-state reaction at room temperature, maintaining the mixture at room temperature for 12 h, washing the mixture with water, and drying at 60 °C. The resulting NH4MnPO4·H2O and its products of thermal decomposition were characterized using thermogravimetry and differential thermal analyses (TG/DTA), IR, X-ray powder diffraction (XRD), scanning electron microscopy (SEM), UV–vis, and magnetic susceptibility. The data showed that when dried at 60 °C for 5 h, highly crystallized orthorhombic NH4MnPO4·H2O (space group Pmnm(59)) was obtained with an average particle size of 45 nm and an average interlayer distance of 0.8701 nm. On the other hand, monoclinic nanocrystalline Mn2P2O7 with space group C2/m(12) was obtained when the product was calcined at 600 °C for 3 h. Magnetic susceptibility measurements from room temperature to 2.5 K point to ferrimagnetic ordering at TN~17 K.  相似文献   

6.
Adsorption and decomposition of NO on Pt (1 1 2) have been studied by temperature programmed desorption (TPD), ultraviolet photoelectron spectroscopy (UPS) and X-ray photoelectron spectroscopy (XPS). NO adsorbs molecularly on Pt (1 1 2) at 95 K. About half amount of NO molecules adsorbs at the terrace sites and remaining half amount adsorbs at the step sites at a full monolayer coverage. Then about half of NO molecules adsorbed at step sites decomposes at around 483 K desorbing N2, promptly.  相似文献   

7.
Karl Jacobi  Yuemin Wang 《Surface science》2009,603(10-12):1600-1604
The interaction of NO with the O-rich RuO2(1 1 0) surface, exposing coordinatively unsaturated O-bridge, O-cus, and Ru-cus atoms, was studied at 300 K by thermal desorption spectroscopy (TDS) and high-resolution electron energy-loss spectroscopy (HREELS). The conclusions are validated by isotope substitution experiments with 18O. During exposure to NO an O···N–O surface group (NO2-cus) is formed with O-cus. Additionally, a smaller number of empty Ru-cus sites are filled by NO-cus. If one warms the sample to 400 K, NO2-cus does not desorb but decomposes into O and NO again, the latter being either released into gas phase or adsorbed as NO-cus. With O-bridge such a surface group is not stable at 300 K. Our experiments further prove that O-cus is more reactive than O-bridge.  相似文献   

8.
Michael A. Henderson 《Surface science》2010,604(13-14):1197-1201
Temperature programmed desorption (TPD), electron energy loss spectroscopy (ELS) and low energy electron diffraction (LEED) were used to study the interaction of molecular oxygen with the (2 × 1) reconstructed surface of hematite α-Fe2O3(011­2) under UHV conditions. The (2 × 1) surface is formed from vacuum annealing of the ‘ideal’ (1 × 1) surface and possesses Fe2+ surface sites based on ELS. While O2 does not stick to the (1 × 1) surface at 120 K, the amount of O2 that can be reversibly adsorbed at 120 K on the (2 × 1) surface was estimated to be ~ 0.5 ML (where 1 ML is defined as the Fe3+ surface coverage on the ideal (1 × 1) surface), with additional O2 that is irreversibly adsorbed based on subsequent H2O TPD. Molecularly and dissociatively adsorbed O2 modifies the surface chemistry of H2O both in terms of enhanced OH stability (relative to either the (1 × 1) or (2 × 1) surfaces) and in the blocking of H2O adsorption sites. While O2 adsorption at 120 to 300 K does not transform the (2 × 1) surface into the (1 × 1) surface, the influence of O2 on the (2 × 1) surface involves both charge transfer from surface Fe2+ sites and formation of an ordered c(2 × 2) structure resulting from O2 dissociation.  相似文献   

9.
Angular and velocity distributions of desorbing O2 during irradiation of 308 nm laser pulses were studied on a stepped Pt(1 1 3) surface. With increases in the coverage, three desorption components collimated at around 12°, 30° and 50° successively appeared when the desorption angle was changed in a plane along the step edge. The translational temperature also showed maxima at these collimation angles, and the values were slightly lower than previous results for 193 nm irradiation. Some possible desorption mechanisms are discussed.  相似文献   

10.
The structural and chemical characterization of Rh, Mo and Rh–Mo nanosized clusters formed by physical vapor deposition on TiO2 single crystal was performed by Auger Electron Spectroscopy (AES), Thermal Desorption Spectroscopy (TDS) and Reflection Absorption Infrared Spectroscopy (RAIRS), applying CO as test molecule. On a slightly reduced titania surface 2D-like growth of Rh was revealed at 300 K up to 0.23 ML coverage by AES and CO-desorption experiments. For CO-saturated Rh particles TDS showed molecular CO desorption in a broad temperature range with Tp = 400, 440, 490 and 540 K (α-states), the latter state appearing only on the smallest Rh particles. The population of γ-state (Tp = 780–820 K) originating from the recombination of C and O atoms on the support began at ΘRh = 0.23ML and was maximized at around 1–2 ML Rh coverage, corresponding to 30% dissociation of CO. A possible dissociation precursor on Rh particles is identified as linearly bonded CO on step sites characterized by ν(C–O) of 2017 cm? 1. Deliberation of CO2 could not be detected between 170 and 900 K, showing the absence of disproportionation reaction. Instead of oxidizing CO molecules, oxygen atoms stemming from the dissociation of CO attached to the reduced centers of titania, indicating the role of adsorption sites at the perimeter of Rh particles in the decomposition process. 2 ML of predeposited Mo enhanced markedly the dispersion of Rh particles as a result of strong Rh–Mo interaction, but it slightly reduced the molecular α-CO desorption possibly due to enhanced dissociation. The formation of γ-CO was suppressed considerably through elimination of adsorption centers by Mo on the TiO2 substrate. The reactivity of Rh layers deposited on Mo-covered surface towards CO was reduced after repeated annealing to 600 K due to partial encapsulation of Rh by titania, manifesting in the suppression of the more strongly bonded α-state. Mo-deposits (up to 0.5ML) on Rh particles decreased the saturation coverage of α-CO through a site-blocking mechanism without detectable influence on the binding energy of CO to Rh, indicating Mo island formation. The carbon arising from the decomposition of CO dissolved in the Mo-containing particles formed a solid solution stable even at 900 K, suggesting a possible role of molybdenum carbide regarding the enhanced catalytic activity of Rh clusters.  相似文献   

11.
《Surface science》2003,470(1-2):27-44
Reflection absorption infrared spectroscopy (RAIRS) and temperature programmed desorption (TPD) have been used to investigate the effect of pre-dosed O atoms on the adsorption of NO on Pt{2 1 1} at room temperature. RAIRS experiments show that no new species are formed when NO is adsorbed onto a Pt{2 1 1} surface that has been pre-dosed with oxygen and no species are lost from the spectra, compared to spectra recorded for NO adsorption on the clean Pt{2 1 1} surface. However pre-dosed oxygen atoms do influence the frequency and intensity of several of the observed infrared bands. In stark contrast, pre-dosed O has a large effect on the TPD spectra. In particular N2 and N2O desorption, seen following NO adsorption on the clean Pt{2 1 1} surface, is completely inhibited. This effect has been assigned to the blocking of NO dissociation by the pre-adsorbed O atoms. A new NO desorption peak, not seen for NO adsorption on the clean Pt{2 1 1} surface, is also observed in TPD spectra recorded following NO adsorption on an oxygen pre-dosed Pt{2 1 1} surface.  相似文献   

12.
N2 physisorption on Single-Walled Carbon Nanotubes (SWCNTs) was investigated by cryogenic thermal-desorption spectroscopy (cryo-TDS). TDS spectra revealed a desorption peak at 48 K (α) for as-purified SWCNTs and an additional desorption peak at 73 K (β) for air-oxidized SWCNTs. When N2 and H2 were coadsorbed on SWCNTs, H2 adsorption was blocked by the N2 preadsorption. By comparing the TDS data with and without the N2 preadsorption, the α and β peaks were attributed to N2 adsorbed on the groove site and inside of SWCNTs, respectively.  相似文献   

13.
The oxidation of Fe(111) was studied using Auger electron spectroscopy (AES), low energy electron diffraction (LEED), X-ray photoelectron spectroscopy (XPS), ion scattering spectroscopy (ISS) and scanning tunnelling microscopy (STM). Oxidation of the crystal was found to be a very fast process, even at 200 K, and the Auger O signal saturation level is reached within ~ 50 × 10? 6 mbar s. Annealing the oxidised surface at 773 K causes a significant decline in apparent surface oxygen concentration and produces a clear (6 × 6) LEED pattern, whereas after oxidation at ambient temperature no pattern was observed. STM results indicate that the oxygen signal was reduced due to the nucleation of large, but sparsely distributed oxide islands, leaving mainly the smooth (6 × 6) structure between the islands. The reactivity of the (6 × 6) layer towards methanol was investigated using temperature programmed desorption (TPD), which showed mainly decomposition to CO and CO2, due to the production of formate intermediates on the surface. Interestingly, this removes the (6 × 6) structure by reduction, but it can be reformed from the sink of oxygen present in the large oxide islands simply by annealing at 773 K for a few minutes. The (6 × 6) appears to be a relatively stable, pseudo-oxide phase, that may be useful as a model oxide surface.  相似文献   

14.
CO adsorption on clean and oxidized Pt3Ti(111) surfaces has been investigated by means of Auger Electron Spectroscopy (AES), Thermal Desorption Spectroscopy (TDS), Low Energy Electron Diffraction (LEED) and High Resolution Electron Energy Loss Spectroscopy (HREELS). On clean Pt3Ti(111) the LEED patterns after CO adsorption exhibit either a diffuse or a sharp c(4 × 2) structure (stable up to 300 K) depending on the adsorption temperature. Remarkably, the adsorption/desorption behavior of CO on clean Pt3Ti(111) is similar to that on Pt(111) except that partial CO decomposition on Ti sites and partial CO oxidation have also been evidenced. Therefore, the clean surface cannot be terminated by a pure Pt plane. Partially oxidized Pt3Ti(111) surfaces (< 135 L O2 exposure at 1000 K) exhibit a CO adsorption/desorption behavior rather similar to that of the clean surface, showing again a c(4 × 2) structure (stable up to 250 K). Only the oxidation of CO is not detectable any more. These results indicate that some areas of the substrate remain non-oxidized upon low oxygen exposures. Heavily oxidized Pt3Ti(111) surfaces (> 220 L O2 exposure at 1000 K) allow no CO adsorption indicating that the titanium oxide film prepared under these conditions is completely closed.  相似文献   

15.
Proton transfer in water–hydroxyl mixed overlayers on a Pt(1 1 1) surface was studied by a combination of laser induced thermal desorption (LITD) method and spatially-resolved X-ray photoelectron spectroscopy (micro-XPS). The modulated pattern OH + H2O/H2O/OH + H2O was initially prepared by the LITD method; vacant area with a 400 μm width was first formed in the mixed OH + H2O overlayer by irradiation of focused laser pulses, and followed by refilling the vacant area with pure H2O. Spatial distribution changes of OH and H2O were measured as a function of time with the micro-XPS technique, which indicated that H2O molecules in the central region flow into the OH + H2O region. From quantitative analyses using a diffusion equation, we found that the proton transfer in the mixed overlayer consists of at least two pathways: direct proton transfer from H2O to OH in the nearest site and the proton transfer to the next-nearest site via H3O+ formation. The time scale of first and second path was estimated to be 5.2 ± 0.9 ns and 48 ± 12 ns at 140 K, respectively. In the presence of water capping layer, however, the rate of proton transfer is reduced by an order of magnitude, which would be explained by peripatetic behavior of proton into H2O capping layer.  相似文献   

16.
In this paper, we reported a method to prepare monodisperse magnetite nanoparticles at mild temperature using cheap and non-toxic precursors. It overcomes the shortages of chemical co-precipitation method and thermal decomposition method and combines the advantages of facile, cheap, large-scale, monodisperse, nanosize, and low synthesis temperature and low toxic. In this method, FeCl3 · 6H2O, FeCl2 · 4H2O and sodium oleate were mixed in toluene/ethanol/water mixture solvent and refluxed at 74 °C to prepare magnetite nanoparticles directly. The nanoparticles were characterized by transmission electron microscopy, dynamic light scattering, X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectrometer and thermogravimetric analysis. The magnetic properties of nanoparticles were measured by superconducting quantum interference device. The results showed that the nanoparticles are well-monodisperse with about 4–5 nm of average diameter. The nanoparticles were proved to be superparamagnetic with saturated magnetization 23.6 emu/g and blocking temperature 24.4 K. A possible formation mechanism of monodisperse magnetite nanoparticles was presented at the same time.  相似文献   

17.
In this paper we review the preparation and reaction properties of ordered SmRh surface alloys and SmOx/Rh(1 0 0) model catalyst which have been systematically investigated by low energy electron diffraction (LEED), Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), high-resolution electron energy loss spectroscopy (HREELS) and temperature desorption spectroscopy (TDS). The growth of Sm on Rh(1 0 0) at room temperature follows the Stranski-Krastanov mode. Thermal treatment of the Sm films on Rh(1 0 0) leads to the formation of ordered SmRh surface alloys. An “inverse” SmOx/Rh(1 0 0) model catalyst is produced under controlled oxidation of the SmRh surface alloy. CO adsorption on the SmRh alloy and SmOx/Rh(1 0 0) surfaces gives rise to five TDS characteristic features originating from different adsorption sites. Both the site blocking of SmOx and the electron transfer between SmOx and Rh substrate significantly affect the CO adsorption. Acetate decomposition on both Rh(1 0 0) and the SmOx/Rh(1 0 0) surfaces are found to undergo two competitive pathways that yields either (i) CO(a) and O(a) or (ii) CO2(g) and H2(g) at high temperature. The reactive desorption of acetic acid on SmOx/Rh(1 0 0) is dramatically different from that on Rh(1 0 0). A rapid decomposition of acetic acid to produce CO(g) and CO2(g) can be observed only on SmOx/Rh(1 0 0), where CO(g) becomes the predominant product at 225 K, indicating a strong promotional effect of SmOx in the selective decomposition of acetate. Finally, we briefly describe the future outlook of research on rare earth oxide/metal model catalysts.  相似文献   

18.
The adsorption/decomposition kinetics/dynamics of thiophene has been studied on silica-supported Mo and MoSx clusters. Two-dimensional cluster formation at small Mo exposures and three-dimensional cluster growth at larger exposures would be consistent with the Auger electron spectroscopy (AES) data. Thermal desorption spectroscopy (TDS) indicates two reaction pathways. H4C4S desorbs molecularly at 190–400 K. Two TDS features were evident and could be assigned to molecularly on Mo sites, and S sites adsorbed thiophene. Assuming a standard preexponential factor (ν = 1 × 1013/s) for first-order kinetics, the binding energies for adsorption on Mo (sulfur) sites amount to 90 (65) kJ/mol for 0.4 ML Mo exposure and 76 (63) kJ/mol for 2 ML Mo. Thus, smaller clusters are more reactive than larger clusters for molecular adsorption of H4C4S. The second reaction pathway, the decomposition of thiophene, starts at 250 K. Utilizing multimass TDS, H2, H2S, and mostly alkynes are detected in the gas phase as decomposition products. H4C4S bond activation results in partially sulfided Mo clusters as well as S and C residuals on the surface. S and C poison the catalyst. As a result, with an increasing number of H4C4S adsorption/desorption cycles, the uptake of molecular thiophene decreases as well as the H2 and H2S production ceases. Thus, silica-supported sulfided Mo clusters are less reactive than metallic clusters. The poisoned catalyst can be partially reactivated by annealing in O2. However, Mo oxides also appear to form, which passivate the catalyst further. On the other hand, while annealing a used catalyst in H/H2, it is poisoned even more (i.e., the S AES signal increases). By means of adsorption transients, the initial adsorption probability, S0, of C4H4S has been determined. At thermal impact energies (Ei = 0.04 eV), S0 for molecular adsorption amounts to 0.43 ± 0.03 for a surface temperature of 200 K. S0 increases with Mo cluster size, obeying the capture zone model. The temperature dependence of S0(Ts) consists of two regions consistent with molecular adsorption of thiophene at low temperatures and its decomposition above 250 K. Fitting S0(Ts) curves allows one to determine the bond activation energy for the first elementary decomposition step of C4H4S, which amounts to (79 ± 2) kJ/mol and (52 ± 4) kJ/mol for small and large Mo clusters, respectively. Thus, larger clusters are more active for decomposing C4H4S than are smaller clusters.  相似文献   

19.
The Ir(111) surface is oxidized with gas-phase oxygen atoms under vacuum condition to achieve an oxidation level beyond its saturation coverage for chemisorption. Two surface oxides, rutile IrO2 of (100) domain and corundum Ir2O3 of (001) domain, have been grown at 550 K with different oxygen exposure of 3.6 × 105 L and 7.2 × 105 L respectively. The temperature programmed desorption (TPD) experiment of rutile IrO2(100) shows its desorption curve (at 4 K s? 1) peaks at 750 K, followed by a long tail of less pronounced desorption features. On the other hand, TPD of corundum Ir2O3(001) displays a symmetric trace, peaking at 880 K. Carbon monoxide titration experiments show that adsorbed CO reduces corundum Ir2O3(001) at 400 K, but CO does not adsorb on rutile IrO2(100) and no reduction reaction occurs. Evidently, among the two surface oxides, corundum Ir2O3(001) involves in catalysis of carbon monoxide oxidation, while rutile IrO2(100) does not. The formation of two surface oxides is also compared, we conclude that the atom arrangement favors Ir2O3(001) at the oxide/metal interface.  相似文献   

20.
Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to study the porous and non-porous α-tricalcium phosphate (α-Ca3(PO4)2, α-TCP) prepared through a sintering procedure at 1200–1400 °C of β-tricalcium phosphate (β-Ca3(PO4)2, β-TCP). The interpretation of experimental and calculated X-ray and electron diffraction patterns showed that the final product at 1400 °C was primarily α-TCP but roughly 3.0–8.0 wt.% of the starting β-TCP phase and up to 8.0 wt.% of CaO were in the final product. TEM images and electron diffraction patterns showed that the CaO phase – formed by decomposition of TCP – exists as micron-sized areas of various oriented nanocrystals embedded into the bulk α-TCP material and also as self-standing spherulite particles of a few microns in size. Surprisingly, formation of CaO from TCP decomposition occurred at temperatures below those predicted from the phase diagram of the CaO–P2O5 system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号