首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
A novel approach to facilitate excitation and readout processes of isolated negatively charged nitrogen‐vacancy (NV) centers is proposed. The approach is based on the concept of all‐dielectric nanoantennas. It is shown that the all‐dielectric nanoantenna can significantly enhance both the emission rate and emission extraction efficiency of a photoluminescence signal from a single NV center in a diamond nanoparticle on a dielectric substrate. The proposed approach provides high directivity, large Purcell factor, and efficient beam steering, thus allowing an efficient far‐field initialization and readout of several NV centers separated by subwavelength distances.

  相似文献   


2.
We consider the possibility of the formation of a superconductivity state either in a semiconductor or in an electron–hole plasma with degenerate electrons due to the attractive forces between the electrons as a result of the exchange effects through the electron–hole sound wave by an analogy to the phonon waves in a solid state. We have determined an interaction potential between two electrons in a degenerate electron–hole plasma. The potential appears to be attractive at distances much larger than the Debye radius and decreases as 1/r3. We discuss the conditions in which the bound electron state, the so‐called “Cooper Pair,” in a such field can be formed.  相似文献   

3.
Recently, metasurfaces have received increasing attention due to their ability to locally manipulate the amplitude, phase and polarization of light with high spatial resolution. Transmissive metasurfaces based on high‐index dielectric materials are particularly interesting due to the low intrinsic losses and compatibility with standard industrial processes. Here, it is demonstrated numerically and experimentally that a uniform array of silicon nanodisks can exhibit close‐to‐unity transmission at resonance in the visible spectrum. A single‐layer gradient metasurface utilizing this concept is shown to achieve around 45% transmission into the desired order. These values represent an improvement over existing state‐of‐the‐art, and are the result of simultaneous excitation and mutual interference of magnetic and electric‐dipole resonances in the nanodisks, which enables directional forward scattering with a broad bandwidth. Due to CMOS compatibility and the relative ease of fabrication, this approach is promising for creation of novel flat optical devices.

  相似文献   


4.
Influence of electron‐beam (e‐beam) irradiation on multi‐walled (MW) and single‐walled (SW) carbon nanotube films grown by microwave chemical vapor deposition technique is investigated. These films were subjected to an e‐beam energy of 50 keV from a scanning electron microscope for 2.5, 5.5, 8.0, and 15 h, and to 100 and 200 keV from a transmission electron microscope for a few minutes to ∼2 h continuously. Such conditions resemble an increased temperature and pressure regime enabling a degree of structural fluidity. To assess structural modifications, they were analyzed prior to and after irradiation using resonance Raman spectroscopy (RRS) in addition to in situ monitoring by electron microscopy. The experiments showed that with extended exposures, both types of nanotubes displayed various local structural instabilities including pinching, graphitization/amorphization, and formation of an intramolecular junction (IMJ) within the area of electron beam focus possibly through amorphous carbon aggregates. RRS revealed that irradiation generated defects in the lattice as quantified through (1) variation of the intensity of radial breathing mode (RBM), (2) intensity ratio of D to G band (ID/IG), and (3) positions of the D and G bands and their harmonics (D* and G*) and combination bands (D + G). The increase in the defect‐induced D band intensity, quenching of RBM intensity, and only a slight increase in G band intensity are some of the implications. The MW nanotubes tend to reach a state of saturation for prolonged exposures, while the SW ones transform from a semiconducting to a quasi‐metallic character. Softening of the q = 0 selection rule is suggested as a possible reason to explain these results. Furthermore, these studies provide a contrasting comparison between MW and SW nanotubes. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
A new solid‐state electrochemical patterning technique was applied to fabrication of high‐resolution silver bowtie antennas and hexagonal arrays. These silver nanofeatures were used to investigate the relation among surface enhanced Raman scattering (SERS) enhancement factor (EF), extinction, local electromagnetic (EM) field maxima of the features. It is found that spectral extinction property or the plasmonic resonance of a given SERS substrate alone is not sufficient for determining optimal EF; the number of points of high local EM field, or ‘hot spots’, and the distribution of those high‐field spots, too, play a role. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Microwave magnetoresistance of lightly doped (nondegenerate) p‐Ge has been studied by the electron spin resonance method, which can record the derivative of the microwave absorption with respect to the magnetic field. The change in the absorption is proportional to that in the conductivity of the semiconductor in the magnetic field (magnetoresistance). It was found that the averaging time of the light and heavy holes effective masses depends on temperature and on the magnetic field direction in a sample. An analysis of the derivative made it possible to determine regions of the fastest effective mass averaging.  相似文献   

7.
Large‐scale and tunable synthesis of FeCo/graphitic carbon (FeCo/GC) core–shell nanoparticles as a promising material for multipurpose biomedical applications is reported. The high‐quality graphitic structure of the carbon shells is demonstrated through high‐resolution transmission electron microscopy (HRTEM), X‐ray diffraction (XRD), and Raman spectroscopy. A saturation magnetization of 80.2 emu g?1 is reached for the pure FeCo/GC core–shell nanoparticles. A decrease in the saturation magnetization of the samples is observed with an increase in their carbon content with different carbon morphologies evolved in the process. It is also shown how hybrid nanostructures, including mixtures of the FeCo/GC nanoparticles and multi‐walled carbon nanotubes (MWNTs) or carbon nanorods (CNRs), can be obtained only by manipulation of the carbon‐bearing gas flow rate.  相似文献   

8.
The authors analyse two‐component electroneutral systems of classical macroions of finite size and point‐like oppositely charged microions. This article deals with the modification of the Debye–Hückel plus hole approximation when a non‐linear screening effect is taken into account in a complex plasma. Parameters of non‐linear screening of the macroions by surrounding microions are calculated within the framework of the Poisson–Boltzmann approximation. Two effects are found as a result of such calculations: (a) subdivision of all microions into two subclasses, free microions and bound microions and (b) a significant reduction of an effective charge Z* of the macroion in comparison with its true value Z due to the non‐linear screening by a thin high‐density envelope of the bound microions. We show that the value of a non‐ideal portion of an internal energy differs considerably in the case when the non‐linear screening effect is taken into account in the vicinity of the macroion.  相似文献   

9.
This paper studies the propagation and spatial attenuation of high‐frequency eigen‐symmetric and dipolar electromagnetic waves along a coaxial plasma–metal waveguiding structure that contains a slightly axial and strong radial non‐uniform cylindrical plasma slab in an external azimuthal non‐uniform magnetic field. The influence of such parameters as the effective electron collision frequency, the direct current value producing the external azimuthal magnetic field, parameters that characterize plasma density radial profile, and waveguide geometric parameters on the dispersion, spatial attenuation, and radial field structure of the waves is considered. The regions of waveguiding structure parameters where the electromagnetic wave properties can be effectively controlled are studied and analyzed.  相似文献   

10.
Employing laser wigglers and accelerators provides the potential to dramatically cut the size and cost of X‐ray light sources. Owing to recent technological developments in the production of high‐brilliance electron beams and high‐power laser pulses, it is now conceivable to make steps toward the practical realisation of laser‐pumped X‐ray free‐electron lasers (FELs). In this regard, here the head‐on collision of a relativistic dense electron beam with a linearly polarized laser pulse as a wiggler is studied, in which the laser wiggler can be realised using a conventional quantum laser. In addition, an external guide magnetic field is employed to confine the electron beam against self‐fields, therefore improving the FEL operation. Conditions allowing such an operating regime are presented and its relevant validity checked using a set of general scaling formulae. Rigorous analytical solutions of the dynamic equations are provided. These solutions are verified by performing calculations using the derived solutions and well known Runge–Kutta procedure to simulate the electron trajectories. The effects of self‐fields on the FEL gain in this configuration are estimated. Numerical calculations indicate that in the presence of self‐fields the sensitivity of the gain increases in the vicinity of resonance regions. Besides, diamagnetic and paramagnetic effects of the wiggler‐induced self‐magnetic field cause gain decrement and enhancement for different electron orbits, while these diamagnetic and paramagnetic effects increase with increasing beam density. The results are compared with findings of planar magnetostatic wiggler FELs.  相似文献   

11.
We report a quantum‐chemistry study of electronic structures and spectral properties of a series of Pt(II) complexes containing different substituents (? CH3 ( 1 ), ? OCH3 ( 2 ), ? NO2 ( 3 ), ? CF3 ( 4 ), and ? COOH ( 5 )). 1 and 2 have been previously synthesized in experiment, while 3 – 5 are artificial complexes that we suggest can be used to investigate the electron‐withdrawing effect on charge injection, transport, absorption, and phosphorescence properties. The results reveal that the stronger electron‐donating and ‐withdrawing groups show stronger absorption intensity, while the phosphorescence efficiency is generally higher for complexes containing electron‐donating substituents. 1 and 2 are easier for hole injection, while 3 – 5 are easier for electron injection. The enhanced electron injection abilities of 3 – 5 will confine more excitons in the light‐emitting layer (EML) and may not result in lower electroluminescence (EL) efficiency than 1 and 2 . These results suggest that the three artificial complexes may be new emitters in organic light‐emitting diodes (OLEDs). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Recently, the use of nanomaterials as intracellular targeting tools for theranostics has gained heightened interest. Despite the clear advantages posed by surface‐functionalized nanoparticles (NPs) in this regard, limited understanding currently exists due to difficulties in reliably synthesizing NPs with surface functionalizations adequate for use in such applications, as well as the manner of analytics used to assess the cellular uptake and intracellular localization of these NPs. In the present study, two key surface functionalities (a nuclear localization sequence (NLS) and integrin‐ligand (cRGD)) are attached to the surface of multifunctional, silica hybrid magnetic nanoparticles (SHMNPs) containing a polyethylene glycol (PEG) polymer coating using a well‐described, reliable, and reproducible microreactor set‐up. Subsequent analytical interpretation, via laser scanning confocal, transmission electron and dark‐field microscopy, as well as flow cytometry, of the interaction of SHMNPs‐PEG‐cRGD‐NLS with macrophage (J774A.1) and epithelial (HeLa) cells shows internalization of the SHMNPs‐PEG‐cRGD‐NLS in both cell types up to 24 h after 20 μg mL?1 exposure, as well as increasing aggregation inside of vesicles over this time period. The findings of this study show that by incorporating a variety of state‐of‐the‐art analytical and imaging approaches, it is possible to determine the specific effectiveness of surface peptide and ligand sequences upon multifunctional SHMNPs.  相似文献   

13.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号