首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Understanding nanoscale structural hierarchy/complexity of hydrophilic flexible polymers is imperative because it can be viewed as an analogue to protein‐alike superstructures. However, current understanding is still in infancy. Herein the first demonstration of nanoscale structural hierarchy/complexity via copper chelation–induced self‐assembly (CCISA) is presented. Hierarchically‐ordered colloidal networks and disks can be achieved by deliberate control of spacer length and solution pH. Dynamic light scattering, transmission electron microscopy, and atomic force microscopy demonstrate that CCISA underwent supramolecular‐to‐supracolloidal stepwise‐growth mechanism, and underline amazing prospects to the hierarchically‐ordered superstructures of hydrophilic flexible polymers in water.

  相似文献   


2.
Endowing unimolecular soft nanoobjects with biomimetic functions is attracting significant interest in the emerging field of single‐chain technology. Inspired by the compartmentalized structure and polymerase activity of metalloenzymes, copper‐containing compact nanoglobules have been designed, synthesized, and characterized endowed with metalloenzyme mimicking characteristics toward controlled synthesis of water‐soluble polymers and thermoresponsive hydrogels. When compared to metalloenzymes, artificial nanoobjects endowed with metalloenzyme mimicking characteristics offer increased stability against thermal changes and reduced degradability by hydrolytic enzymes.

  相似文献   


3.
A novel and facile approach to manipulate the morphology of Cu2+‐ion‐specific assembly of conjugated polymer by coordinative interaction at an oil–water two‐phase interface is present. The application of increasing importance is the use of π‐conjugated polymers as receptors, exploiting their ability to selectively form complexes, which can obviously change the optical properties in solution and induce the formation of varied solid nano/microstructures. By this method, microtubes are formed through self‐rolling of a strained ionic bilayer film at the oil/water interface.  相似文献   

4.
Easy access to discrete nanoclusters in metal‐folded single‐chain nanoparticles (metal‐SCNPs) and independent ultrafine sudomains in the assemblies via coordination‐driven self‐assembly of hydrophilic copolymer containing 9% imidazole groups is reported herein. 1H NMR, dynamic light scattering, and NMR diffusion‐ordered spectroscopy results demonstrate self‐assembly into metal‐SCNPs (>70% imidazole‐units folded) by neutralization in the presence of Cu(II) in water to pH 4.6. Further neutralization induces self‐assembly of metal‐SCNPs (pH 4.6–5.0) and shrinkage (pH 5.0–5.6), with concurrent restraining residual imidazole motifs and hydrophilic segment, which organized into constant nanoparticles over pH 5.6–7.5. Atomic force microscopy results evidence discrete 1.2 nm nanoclusters and sub‐5‐nm subdomains in metal‐SCNP and assembled nanoparticle. Reduction of metal center using sodium ascorbate induces structural rearrangement to one order lower than the precursor. Enzyme mimic catalysis required media‐tunable discrete ultrafine interiors in metal‐SCNPs and assemblies have hence been achieved.  相似文献   

5.
Many research groups have explored the properties and solution self‐assembly of main chain metallo‐supramolecular multiblock copolymers. Until recently, these metal complexes have been used to prepare mainly micelle type structures. However, the self‐assembly of such copolymers has been exploited further to create more advanced architectures which utilize the reversible supramolecular linkage of their building blocks as a key component in their synthesis. Furthermore, the incorporation of multiple orthogonal interactions and stimuli responsive polymers into their design, enables more precise external control of their properties. This feature article discusses recent developments and provides an insight into their potential exploitation and development for the creation of novel, smart, and responsive nanostructures.

  相似文献   


6.
Diffusion of single molecules of a substituted terrylene diimide dye in functionalized mesoporous silica films was monitored by single‐molecule fluorescence microscopy. By varying the chemical nature and density of the functional groups, the diffusion dynamics of the dye molecules can be controlled precisely. The picture shows a sketch of a dye molecule in a pore, diffusion data for different phenyl functionalization densities, and the trajectory of one molecule in a cyanopropyl‐functionalized film.

  相似文献   


7.
The design of siloxane‐based nanoparticles is important for many applications. Here we show a novel approach to form core–shell silica nanoparticles of a few nanometers in size through the principle of “dispersion of ordered mesostructures into single nanocomponents”. Self‐assembled siloxane–organic hybrids derived from amphiphilic alkyl‐oligosiloxanes were postsynthetically dispersed in organic solvent to yield uniform nanoparticles consisting of dense lipophilic shells and hydrophilic siloxane cores. In situ encapsulation of fluorescent dyes into the nanoparticles demonstrated their ability to function as nanocarriers.  相似文献   

8.
Metallo‐supramolecular core cross‐linked (CCL) micelles are fabricated from terpyridine‐functionalized double hydrophilic block copolymers, poly(2‐(2‐methoxyethoxy)ethyl methacrylate)‐b‐poly(2‐(diethylamino)ethyl methacrylate‐co‐4′‐(6‐methacryloxyhexyloxy)‐2,2′:6′,2″‐terpyridine) [PMEO2MA‐b‐P(DEA‐co‐TPHMA)] via the formation of bis(terpyridine)ruthenium(II) complexes. These metallo‐supramolecular CCL micelles exhibit not only high structural integrity under different pH values and temperatures in aqueous solution, but multistimuli responsiveness including pH‐responsive cores, thermo‐responsive shells, and reversible dissociation of bis(terpyridine)ruthenium(II) complexes upon addition of competitive metal ion chelator, which allows for precisely controlled release of the encapsulated hydrophobic guest molecules via the combination of different stimuli.

  相似文献   


9.
Simultaneous coordination‐association and electrostatic‐repulsion interactions play critical roles in the construction and stabilization of enzymatic function metal centers in water media. These interactions are promising for construction and self‐assembly of artificial aqueous polymer single‐chain nanoparticles (SCNPs). Herein, the construction and self‐assembly of dative‐bonded aqueous SCNPs are reported via simultaneous coordination‐association and electrostatic‐repulsion interactions within single chains of histamine‐based hydrophilic block copolymer. The electrostatic‐repulsion interactions are tunable through adjusting the imidazolium/imidazole ratio in response to pH, and in situ Cu(II)‐coordination leads to the intramolecular association and single‐chain collapse in acidic water. SCNPs are stabilized by the electrostatic repulsion of dative‐bonded block and steric shielding of nonionic water‐soluble block, and have a huge specific surface area of function metal centers accessible to substrates in acidic water. Moreover, SCNPs can assemble into micelles, networks, and large particles programmably in response to the solution pH. These unique media‐sensitive phase‐transformation behaviors provide a general, facile, and versatile platform for the fabrication of enzyme‐inspired smart aqueous catalysts.

  相似文献   


10.
We synthesized a semiartificial β‐1,3‐glucan, curdlan with dialkylaniline groups (CUR‐DA), that bears chromophoric aromatic groups at its peripheral positions. Spectroscopic studies as well as microscopic observations indicate that CUR‐DA adopts a triple‐stranded helical structure in water‐ or methanol‐rich solutions of dimethyl sulfoxide (DMSO). This triple‐stranded helical structure exhibits high thermal stability and resistance to base, attributes that are similar to those of the triple‐stranded helical structure of native β‐1,3‐glucans such as schizophyllan. Moreover, we found that the stability of the triple‐stranded helical structure can be easily modulated by solvent composition and metal‐ion (Zn2+) binding. As β‐1,3‐glucan polysaccharides are known to serve as “polymeric” hosts, including certain DNA molecules, carbon nanotubes, and conjugated polymers, and complexation occurs only with the single‐stranded structure, this information is very useful for the creation of these attractive polymeric composites, the controlled release of DNA, and so on.  相似文献   

11.
A triphosphaazatriangulene (H3L) was synthesized through an intramolecular triple phospha‐Friedel–Crafts reaction. The H3L triangulene contains three phosphinate groups and an extended π‐conjugated framework, which enables the stimuli‐responsive reversible transformation of [Cu(HL)(DMSO)?(MeOH)]n, a 3D‐MOF that exhibits reversible sorption characteristics, into (H3L?0.5 [Cu2(OH)4?6 H2O] ?4 H2O), a 1D‐columnar assembled proton‐conducting material. The hydrophilic nature of the latter resulted in a proton conductivity of 5.5×10?3 S cm?1 at 95 % relative humidity and 60 °C.  相似文献   

12.
13.
Supramolecular nanoparticles (SNPs) encompass multiple copies of different building blocks brought together by specific noncovalent interactions. The inherently multivalent nature of these systems allows control of their size as well as their assembly and disassembly, thus promising potential as biomedical delivery vehicles. Here, dual responsive SNPs have been based on the ternary host–guest complexation between cucurbit[8]uril (CB[8]), a methyl viologen (MV) polymer, and mono‐ and multivalent azobenzene (Azo) functionalized molecules. UV switching of the Azo groups led to fast disruption of the ternary complexes, but to a relatively slow disintegration of the SNPs. Alternating UV and Vis photoisomerization of the Azo groups led to fully reversible SNP disassembly and reassembly. SNPs were only formed with the Azo moieties in the trans and the MV units in the oxidized states, respectively, thus constituting a supramolecular AND logic gate.  相似文献   

14.
The C3‐symmetric chiral propylated host‐type ligands (±)‐tris(isonicotinoyl)‐tris(propyl)‐cyclotricatechylene ( L1 ) and (±)‐tris(4‐pyridyl‐4‐benzoxy)‐tris(propyl)‐cyclotricatechylene ( L2 ) self‐assemble with PdII into [Pd6L8]12+ metallo‐cages that resemble a stella octangula. The self‐assembly of the [Pd6( L1 )8]12+ cage is solvent‐dependent; broad NMR resonances and a disordered crystal structure indicate no chiral self‐sorting of the ligand enantiomers in DMSO solution, but sharp NMR resonances occur in MeCN or MeNO2. The [Pd6( L1 )8]12+ cage is observed to be less favourable in the presence of additional ligand, than is its counterpart, where L=(±)‐tris(isonicotinoyl)cyclotriguaiacylene ( L1 a ). The stoichiometry of reactant mixtures and chemical triggers can be used to control formation of mixtures of homoleptic or heteroleptic [Pd6L8]12+ metallo‐cages where L= L1 and L1 a .  相似文献   

15.
16.
Metal–organic frameworks (MOFs) have emerged as porous solids of a superior type for the fabrication of membranes. However, it is still challenging to prepare a uniformly dispersed robust MOF hybrid membrane. Herein, we propose a simple and powerful strategy, namely, coordination‐driven in situ self‐assembly, for the fabrication of MOF hybrid membranes. On the basis of the coordination interactions between metal ions and ligands and/or the functional groups of the organic polymer, this method was confirmed to be feasible for the production of a stable membrane with greatly improved MOF‐particle dispersion in and compatibility with the polymer, thus providing outstanding separation ability. As an experimental proof of concept, a high‐quality ZIF‐8/PSS membrane was fabricated that showed excellent performance in the nanofiltration and separation of dyes from water.  相似文献   

17.
18.
19.
For chiral gels and related applications, one of the critical issues is how to modulate the stereoselective interaction between the gel and the chiral guest precisely, as well as how to translate this information into the macroscopic properties of materials. Herein, we report that this process can also be modulated by nonchiral solvents, which can induce a chiral‐interaction reversion for organogel formation. This process could be observed through the clear difference in gelation speed and the morphology of the resulting self‐assembly. This chiral effect was successfully applied in the selective separation of quinine enantiomers and imparts “smart” merits to the gel materials.  相似文献   

20.
Metallo‐supramolecular polymers offer attractive possibilities to combine the properties of polymers with the characteristics offered by the metal–ligand coordination. Here we present for the first time the combination of metal‐bis(terpyridine) complexes and lower critical solution temperature (LCST) polymers that can be switched by addressing either the thermosensitive polymer or the metal complex. We describe a new strategy for the synthesis of poly(Nisopropylacrylamide) (PNIPAM) end functionalized with a terpyridine moiety, which is further used for the preparation of FeII and ZnII‐bis(terpyridine PNIPAM). The comparison of the LCST behavior of the uncomplexed ligands and their metal complexes that bear different counter ions is included. Furthermore, the switchability of the synthesized FeII system is demonstrated by a decomplexation reaction followed by the characterization of the uncomplexed ligand.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号