首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chalcogenide glass Se55Ge30As15 have amorphous structure in both as-deposited and annealed conditions. The optical properties of the as-deposited and annealed films were studied using spectrophotometric measurements of transmittance, T(λ), and reflectance, R(λ), at normal incidence of light in the wavelength range 200–2500 nm. Neither annealing temperature nor film thickness can influence spectral response on refractive index and absorption index of films. The type of electronic transition responsible for optical properties is indirectly allowed transition with energy gap of 1.94 eV and phonon energy of 40 meV. The dispersion of the refractive index is discussed in terms of the single oscillator Wemple–Didomenico (WD) model. The width of band tails of localized states into the gap (ΔE), the single oscillator energy (Eo), the dispersion energy (Ed), the optical dielectric constant (ε), the lattice dielectric constant (εL), the plasma frequency (ωp) and the free charge carrier concentration (N) were estimated.  相似文献   

2.
Zinc oxide (ZnO) and aluminium-doped zinc oxide (ZnO:Al) thin films were prepared by RF diode sputtering at varying deposition conditions. The effects of negative bias voltage and RF power on structural and optical properties were investigated. X-ray diffraction measurements (XRD) confirmed that both un-doped and Al-doped ZnO films are polycrystalline and have hexagonal wurtzite structure. The preferential 〈0 0 1〉 orientation and surface roughness evaluated by AFM measurements showed dependence on applied bias voltage and RF power. The sputtered ZnO and ZnO:Al films had high optical transmittance (>90%) in the wavelength range of 400-800 nm, which was not influenced by bias voltage and RF power. ZnO:Al were conductive and highly transparent. Optical band gap of un-doped and Al-doped ZnO thin films depended on negative bias and RF power and in both cases showed tendency to narrowing.  相似文献   

3.
Zinc selenide (ZnSe) thin films (d = 0.11-0.93 μm) were deposited onto glass substrates by the quasi-closed volume technique under vacuum. Their structural characteristics were studied by X-ray diffraction (XRD) and atomic force microscopy (AFM). The experiments showed that the films are polycrystalline and have a zinc blende (cubic) structure. The film crystallites are preferentially oriented with the (1 1 1) planes parallel to the substrate surface. AFM images showed that the films have a grain like surface morphology. The average roughness, Ra = 3.3-6.4 nm, and the root mean square roughness, Rrms = 5.4-11.9 nm, were calculated and found to depend on the film thickness and post-deposition heat treatment.The spectral dependence of the absorption coefficient was determined from transmission spectra, in the range 300-1400 nm.The values of optical bandgap were calculated from the absorption spectra, Eg = 2.6-2.7 eV.The effect of the deposition conditions and post-deposition heat treatment on the structural and optical characteristics was investigated.  相似文献   

4.
In this paper, we report on modifications in structural and optical properties of CdS thin films due to 190 keV Mn-ion implantation at 573 K. Mn-ion implantation induces disorder in the lattice, but does not lead to the formation of any secondary phase, either in the form of metallic clusters or impurity complexes. The optical band gap was found to decrease with increasing ion fluence. This is explained on the basis of band tailing due to the creation of localized energy states generated by structural disorder. Enhancement in the Raman scattering intensity has been attributed to the enhancement in the surface roughness due to increasing ion fluence. Mn-doped samples exhibit a new band in their photoluminescence spectra at 2.22 eV, which originates from the d-d (4T1 → 6A1) transition of tetrahedrally coordinated Mn2+ ions.  相似文献   

5.
Electrosynthesis of Mo(IV) oxide thin films on F-doped SnO2 conducting glass (10-20/Ω/□) substrates were carried from aqueous alkaline solution of ammonium molybdate at room temperature. The physical characterization of as-deposited films carried by thermogravimetric/differential thermogravimetric analysis (TGA/DTA), infrared spectroscopy and X-ray diffraction (XRD) showed the formation of hydrous and amorphous MoO2. Scanning electron microscopy (SEM) revealed a smooth but cracked surface with multi-layered growth. Annealing of these films in dry argon at 450 °C for 1 h resulted into polycrystalline MoO2 with crystallites aligned perpendicular to the substrate. Optical absorption study indicated a direct band gap of 2.83 eV. The band gap variation consistent with Moss rule and band gap narrowing upon crystallization was observed.Structure tailoring of as-deposited thin films by thermal oxidation in ambient air to obtain electrochromic Mo(VI) oxide thin films was exploited for the first time by this novel route. The results of this study will be reported elsewhere.  相似文献   

6.
Antimony telluride thin films were prepared on the well-cleaned glass substrates under a pressure of 10 – 5 torr by thermal evaporation method. The thicknesses of the films were measured using Multiple Beam Interferometer (MBI) technique. The structure of the sample was analyzed by X-ray diffraction technique. The film attains crystalline structure as the temperature of the substrate is increased to 373 K. The d spacing and the lattice parameters of the sample were calculated. Optical behavior of the film samples with the various thicknesses was analyzed by obtaining their transmittance spectra in the wavelength range of 400 – 800 nm. The transmittance is found to decrease with increase in film thickness and also it falls steeply with decreasing wavelength. The optical constants were estimated and the results are discussed. The optical band gap energy decreases with increase in the film thickness. The optical transition in these films is found to be indirect and allowed. Paper presented at the 2nd International Conference on Ionic Devices, Anna University, Chennai, India, Nov. 28–30, 2003.  相似文献   

7.
Nanocrystalline ZnO thin films were grown by means of pulsed laser deposition. The ablation process was carried out at relatively low background oxygen gas pressure (10 Pa) and by varying the substrate temperature up to 600 °C. Information on the structural and morphological properties of the deposited thin films have been obtained by means of X-ray photoelectron, Raman spectroscopies, X-ray diffraction (XRD) and atomic force microscopy (AFM). The results showed that all the deposited films are sub-stoichiometric in oxygen and with a hexagonal wurtzite crystalline structure, characterized by features of some tens of nanometers in size. An improvement of the films' crystalline quality was observed for the deposition temperature of 300 °C while the further increase of the deposition temperature up to 600 °C induces a worsening of the material's structural properties with the development of a large amount of nanoparticle's clusters. The analysis of the XRD patterns shows a growth crystallographic preferential direction as a function of the deposition temperature, in agreement with the appearance of the only E2 optical phonon mode in the Raman spectra. Such findings are compatible with the changes observed in the photoluminescent (PL) optical response and was related to the modification of the ZnO thin film structural quality.  相似文献   

8.
We report on effects of Fe implantation doping-induced changes in structural, optical, morphological, and vibrational properties of cadmium sulfide thin films. Films were implanted with 90 keV Fe+ ions at room temperature for a wide range of fluences from 0.1×1016 to 3.6×1016 ions cm−2 (corresponding to 0.38–12.03 at.% of Fe). Glancing angle X-ray diffraction analysis revealed that the implanted Fe atoms tend to supersaturate by occupying the substitutional cationic sites rather than forming metallic clusters or secondary phase precipitates. In addition, Fe doping does not lead to any structural phase transformation although it induces structural disorder and lattice contraction. Optical absorption studies show a reduction in the optical band gap from 2.39 to 2.17 eV with increasing Fe concentration. This is attributed to disorder-induced band tailing in semiconductors and ion-beam-induced grain growth. The strain associated with a lattice contraction is deduced from micro-Raman scattering measurements and is found that size and shape fluctuations of grains, at higher fluences, give rise to inhomogeneity in strain.  相似文献   

9.
In this paper, we report an alternate technique for the deposition of nanostructured TiO2 thin films using the electrohydrodynamic atomization (EHDA) technique using polyvinylpyrrolidone (PVP) as a stabilizer. The required parameters for achieving uniform TiO2 films using EHDA are also discussed in detail. X-ray diffraction results confirm that the TiO2 films were oriented in the anatase phase. Scanning electron microscope studies revealed the uniform deposition of the TiO2. The purity of the films is characterized by using Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS), confirming the presence of Ti–O bonding in the films without any organic residue. The optical properties of the TiO2 films were measured by UV-visible spectroscopy, which shows that the transparency of the films is nearly 85% in the visible region. The current–voltage (IV) curve of the TiO2 thin films shows a nearly linear behavior with 45 mΩ?cm of electrical resistivity. These results suggest that TiO2 thin films deposited via the EHDA method possess promising applications in optoelectronic devices.  相似文献   

10.
We report on the structural and optical properties of yttria stabilized zirconia (YSZ) thin films grown by pulsed laser deposition (PLD) technique and in situ crystallized at different substrate temperatures (Ts = 400 °C, 500 °C and 600 °C). Yttria-stabilized zirconia target of ∼1 in. diameter (∼95% density) was fabricated by solid state reaction method for thin film deposition by PLD. The YSZ thin films were grown on an optically polished quartz substrates and the deposition time was 30 min for all the films. XRD analysis shows cubic crystalline phase of YSZ films with preferred orientation along 〈1 1 1〉. The surface roughness was determined by AFM for the films deposited at different substrate temperatures. The nano-sized surface roughness is found to increase with the increase of deposition temperatures. For the optical analysis, a UV-vis-NIR spectrophotometer was used and the optical band gap of ∼5.7 eV was calculated from transmittance curves.  相似文献   

11.
Indium zinc oxide (IZO) thin films with different percentages of In content (In/[In+Zn]) are synthesized on glass substrates by magnetron sputtering, and the structural, electrical and optical properties of IZO thin films deposited at different In2O3 target powers are investigated. IZO thin films grown at different In2O3 target sputtering powers show evident morphological variation and different grain sizes. As the In2O3 sputtering power rises, the grain size becomes larger and electrical mobility increases. The film grown with an In2O3 target power of 100 W displays the highest electrical mobility of 13.5 cm·V-1·s-1 and the lowest resistivity of 2.4 × 10-3 Ω·cm. The average optical transmittance of the IZO thin film in the visible region reaches 80% and the band gap broadens with the increase of In2O3 target power, which is attributed to the increase in carrier concentration and is in accordance with Burstein-Moss shift theory.  相似文献   

12.
Structural and optical properties of Zinc Selenide (ZnSe) thin films stacked with multiple Lead Selenide (PbSe) submonolayers (ML) were studied. Thermal evaporation was preferred to produce ZnSe–PbSe thin films with the PbSe ML thickness ranges from 2.5 to 10 nm. Polycrystalline nature of the ZnSe was revealed through high resolution X-ray diffractometer measurement. The development of micro strain at the interfaces with increasing PbSe ML thickness was observed. A cross-sectional TEM image shows well-ordered periodicity and reproducibility of the layer thickness. The enhancement of optical absorption of ZnSe was identified upon stacking of PbSe ML. The evidence for quantum confinement in PbSe ML was revealed by the obtained red shift in band gap (2.5–1.8 eV) values as well as photoluminescence emission at 1,071 nm. The presence of tensile strain in the ZnSe layers upon staking of PbSe ML was discussed by the shift in LO phonon modes in Raman spectra.  相似文献   

13.
Chromotrope 2R (CHR) films of different thicknesses have been prepared using spin coater. The material has been characterized using FT-IR, DTA and X-ray diffraction. The XRD of the material in powder and thin film forms showed polycrystalline structure with triclinic phase. Preferred orientation at the (1 1 4) plane is observed for the deposited films. Initial indexing of the XRD pattern was performed using “Crystalfire” computer program. Miller indices, h k l, values for each diffraction line in X-ray diffraction (XRD) spectrum were calculated and indexed for the first time. The DTA thermograms of CHR powder have been recorded in the temperature range 25–350 °C with different heating rates. The spectra of the infra-red absorption allow characterization of vibration modes for the powder and thin film. The effect of film thickness on the optical properties has been studied in the UV-visible-NIR regions. The films show high transmittance exceeding 0.90 in the NIR region λ > 800 nm. The intensity of the absorption peaks for λ < 800 nm are enhanced as the film thickness increase. The absorption bands are attributed to the (π–π*) and (n–π*) molecular transitions. The optical properties have been analyzed according to the single-oscillator model and the dispersion energy parameters as well as the free charge carrier concentration have been determined. The optical energy gap as well as the oscillator strength and electric dipole strength have been calculated.  相似文献   

14.
In this study the structural and optical properties of lanthanum-doped BaSnO3 powder samples and thin films deposited on fused silica were investigaed using laser ablation. Under an oxygen pressure of 5×10−4 mbar, phase pure BaSnO3 films with a lattice constant of 0.417 nm and grain size of 21 nm were prepared at 630 °C. The band gap of BaSnO3 powder sample and thin films was calculated to be 3.36 eV and 3.67 eV, respectively. There was a progressive increase in conductivity for thin films of BaSnO3 doped with 0~7 at% of La. The highest conductivity, 9 Scm−1, was obtained for 7 at% La-doped BaSnO3. Carrier concentration, obtained from Burstein-Moss (B-M) shift, nearly matches the measured values except for 3 at% and 10 at% La-doped BaSnO3 thin films.  相似文献   

15.
CdS doped TiO2 thin films (with CdS content=0, 3, 6, 9 and 12 at%) were grown on glass substrates. The X-ray diffraction analysis revealed that the films are polycrystalline of monoclinic TiO2 structure. The microstructure parameters of the films such as crystallite size (Dν) and microstrain (e) are calculated. Both the crystallites size and the microstrain are decreased with increasing CdS content. The optical constants have been determined in terms of Murmann's exact equations. The refractive index and extinction coefficient are increased with increasing CdS content. The optical band gap is calculated in the strong absorption region. The possible optical transition in these films is found to be an allowed direct transition. The values of Egopt are found to decrease as the CdS content increased. The films with 3 at% CdS content have better decomposition efficiency than undoped TiO2. The films with 6 at% and 9 at% CdS content have decomposition efficiency comparable to that of undoped TiO2, although they have lower band gap. The CdS doped TiO2 could have a better impact on the decomposing of organic wastes.  相似文献   

16.
王东明  王德亮 《中国物理 B》2017,26(6):67503-067503
The magnetic property in a material is induced by the unpaired electrons. This can occur due to defect states which can enhance the magnetic moment and the spin polarization. In this report, CdS and CdTe thin films are grown on FTO glass substrates by chemical bath deposition and close-spaced sublimation, respectively. The magnetic properties, which are introduced from oxygen states, are found in CdS and CdTe thin films. From the hysteresis loop of magnetic moment it is revealed that CdS and CdTe thin films have different kinds of magnetic moments at different temperatures. The M–H curves indicate that from 100 K to 350 K, CdS and CdTe thin films show paramagnetism and diamagnetism, respectively.A superparamagnetic or a weakly ferromagnetic response is found at 5 K. It is also observed from ZFC/FC curves that magnetic moments decrease with temperature increasing. Spin polarized density functional calculation for spin magnetic moment is also carried out.  相似文献   

17.
A low energy electron accelerator has been constructed and tested. The electron beam can operate in low energy mode (100 eV to 10 keV) having a beam diameter of 8–10 mm. Thin films of CdS having thickness of 100 nm deposited on ITO-coated glass substrate by thermal evaporation method have been irradiated by electron beam in the above instrument. The I–V characteristic is found to be nonlinear before electron irradiation and linear after electron irradiation. The TEP measurement confirms the n-type nature of the material. The TEP and I–V measurements also confirm the modification of ITO/CdS interface with electron irradiation.   相似文献   

18.
Zinc oxide (ZnO) thin films were deposited onto glass substrates by spin-coating method, from a precursor solution containing zinc acetate, ethanol and ammonium hydroxide. After deposition, the films were heated at a temperature of 100 °C in order to remove unwanted materials. Finally, the films were annealed at 500 °C for complete oxidation. X-ray diffraction showed that ZnO films were polycrystalline and have a hexagonal (wurtzite) structure. The crystallites are preferentially oriented with (0 0 2) planes parallel to the substrate surface. The films have a high transparency (more than 75%) in the spectral range from 450 nm to 1300 nm. The analysis of absorption spectra shows the direct nature of band-to-band transitions. The optical bandgap energy ranges between 3.15 eV and 3.25 eV.Some correlations between the processing parameters (spinning speed, temperature of post deposition heat treatment) and structure and optical characteristics of the respective thin films were established.  相似文献   

19.
Silicon carbonitride (SiCN) thin films were deposited on n-type Si (1 0 0) and glass substrates by reactive magnetron sputtering of a polycrystalline silicon target in a mixture of argon (Ar), nitrogen (N2) and acetylene (C2H2). The properties of the films were characterized by scanning electron microscope with an energy dispersive spectrometer, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectrometry and ultraviolet-visible spectrophotometer. The results show that the C2H2 flow rate plays an important role in the composition, structural and optical properties of the films. The films have an even surface and an amorphous structure. With the increase of C2H2 flow rate, the C content gradually increases while Si and N contents have a tendency to decrease in the SiCN films, and the optical band gap of the films monotonically decreases. The main bonds are Si-O, N-Hn, C-C, C-N, Si-N, Si-C and Si-H in the SiCN films while the chemical bonding network of Si-O, C-C, C-O, C-N, N-Si and CN is formed in the surface of the SiCN films.  相似文献   

20.
X-ray powder diffraction (XRD) of MgPc indicated that the material in the powder form is polycrystalline with monoclinic structure. Miller indices, h k l, values for each diffraction peak in XRD spectrum were calculated. Thermal evaporation technique was used to deposit MgPc thin films. The XRD studies were carried out for MgPc thin films where the results confirm the amorphous nature for the as-deposited films. While, polycrystalline films orientated preferentially to (1 0 0) plane with an amorphous background were obtained for films annealed at 623 K for 3 h. Optical properties of MgPc thin films were characterised by using spectrophotometric measurements of transmittance and reflectance in the spectral range from 190 to 2500 nm. The refractive index, n, and the absorption index, k, were calculated. According to the analysis of dispersion curves, the parameters, namely; the optical absorption coefficient (α), molar extinction coefficient (?molar), oscillator energy (Eos), oscillator strength (f), and electric dipole strength (q2) were also evaluated. The recorded absorption measurements in the UV-vis region show two well defined absorption bands of phthalocyanine molecule; namely the Q-band and the Soret (B-band). The Q-band showed its splitting characteristic (Davydov splitting), and ΔQ was obtained as 0.15 eV. The analysis of the spectral behaviour of the absorption coefficient (α), in the absorption region revealed indirect transitions. The transport and the near onset energy gaps were estimated as respectively 2.74 ± 0.02 and 1.34 ± 0.01 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号