首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The chemical control of cell division has attracted much attention in the areas of single cell‐based biology and high‐throughput screening platforms. A mussel‐inspired cytocompatible encapsulation method for achieving a “cell‐division control” with cross‐linked layer‐by‐layer (LbL) shells is developed. Catechol‐grafted polyethyleneimine and hyaluronic acid are chosen as polyelectrolytes for the LbL process, and the cross‐linking of polyelectrolytes is performed at pH 8.5. Cell division is controlled by the number of the LbL nanolayers and cross‐linking reaction. We also suggest a new measuring unit, , for quantifying “cell‐division timing” based on microbial growth kinetics.

  相似文献   


2.
High‐performance catalysts and photovoltaics are required for building an environmentally sustainable society. Because catalytic and photovoltaic reactions occur at the interfaces between reactants and surfaces, the chemical, physical, and structural properties of interfaces have been the focus of much research. To improve the performance of these materials further, inorganic porous materials with hierarchic porous architectures have been fabricated. The breath figure technique allows preparing porous films by using water droplets as templates. In this study, a valuable preparation method for hierarchic porous inorganic materials is shown. Hierarchic porous materials are prepared from surface‐coated inorganic nanoparticles with amphiphilic copolymers having catechol moieties followed by sintering. Micron‐scale pores are prepared by using water droplets as templates, and nanoscale pores are formed between the nanoparticles. The fabrication method allows the preparation of hierarchic porous films from inorganic nanoparticles of various shapes and materials.

  相似文献   


3.
A heterotritopic copillar[5]arene monomer by introducing effective neutral guest moieties (methylene chains end‐capped with cyano and triazole groups) to a pillar[5]arene macrocycle is prepared. This well‐designed AB2‐type copillar[5]arene contains strong host–guest recognition motifs that are connected with relatively flexible and long linkers, thus efficiently assembles to form supramole­cular hyperbranched polymer (SHP) in chloroform solution, which is characterized by various techniques including 1H NMR, DOSY, viscosity, DLS, and TEM. Particularly, this supramolecular polymer can be effectively depolymerized by adding a competitive butanedinitrile guest.

  相似文献   


4.
The functionalization of zinc oxide (ZnO) nanoparticles by poly(3‐hexylthiophene) (P3HT) brush is completed by the combination of a mussel inspired biomimetic anchoring group and Huisgen cyclo‐addition “click chemistry.” Herein, the direct coupling of an azide modified catechol derivative with an alkyne end‐functionalized P3HT is described. This macromolecular binding agent is used to access core@corona ZnO@P3HT with a stable and homogeneous conjugated organic corona. Preliminary photoluminescence measurement proves an efficient electron transfer from the donor P3HT to the acceptor ZnO nanoparticles upon grafting, thus demonstrating the potential of such a combination in organic electronics.

  相似文献   


5.
Thin, phenylboronic acid‐containing polymer coatings are potentially attractive sensory layers for a range of glucose monitoring systems. This contribution presents the synthesis and properties of glucose‐sensitive polymer brushes obtained via surface RAFT polymerization of 3‐methacrylamido phenylboronic acid (MAPBA). This synthetic strategy is attractive since it allows the controlled growth of PMAPBA brushes with film thicknesses of up to 20 nm via direct polymerization of MAPBA without the need for additional post‐polymerization modification or deprotection steps. QCM‐D sensor chips modified with a PMAPBA layer respond with a linear change in the shift of the fundamental resonance frequency over a range of physiologically relevant glucose concentrations and are insensitive toward the presence of fructose, thus validating the potential of these polymer brush films as glucose sensory thin coatings.

  相似文献   


6.
A recent response on a publication from our team investigating solvent effects on propagation rate coefficients is commented. Among other issues, we point to the fact that the response interprets only a subset of the data provided in our original contribution.

  相似文献   


7.
The developments in membranes based on tailored block copolymers are reported with an emphasis on isoporous membranes. These membranes can be prepared in different geometries, namely flat sheets and hollow fibers. They display narrow pore size distributions due to their formation by self‐assembly. The preparation of these membranes and possibilities to further functionalize such membranes will be discussed. Different ways to control the pore size will be addressed, and the potential of block copolymer blends to fabricate membranes with tailored pore sizes will be shown.

  相似文献   


8.
By anchoring alkynylplatinum(II) terpyridine molecular tweezer/pyrene recognition motif on the chain‐ends of telechelic polycaprolactone, high‐molecular‐weight supramolecular polymers have been successfully constructed via noncovalent chain extension, which demonstrate fascinating rheological and thermal properties. Moreover, the resulting assemblies exhibit interesting temperature‐ and solvent‐responsive behaviors, which are promising for the development of adaptive functional materials.

  相似文献   


9.
It remains a huge challenge to create advanced elastomers combining high strength and great toughness. Despite enhanced strength and stiffness, elastomeric nanocomposites suffer notably reduced extensibility and toughness. Here, inspired by the concept of sacrificial bonding associated with many natural materials, a novel interface strategy is proposed to fabricate elastomer/graphene nanocomposites by constructing a strong yet sacrificial interface. This interface is composed of pyridine‐Zn2+‐catechol coordination motifs, which is strong enough to ensure uniform graphene dispersion and efficient stress transfer from matrix to fillers. Moreover, they are sacrificial under external stress, which dissipates much energy and facilitates chain orientation. As a result, the strength, modulus, and toughness of the elastomeric composites are simultaneously strikingly enhanced relative to elastomeric bulk. This work suggests a promising methodology of designing advanced elastomers with exceptional mechanical properties by engineering sacrificial bonds into the interface.

  相似文献   


10.
The synthesis of two 4,7,12,15‐tetrakisalkoxy‐substituted [2.2.2]‐paracyclophane‐1,9,17‐trienes and their polymerization employing ring opening metathesis polymerization (ROMP) using Ru‐carbenes (third‐generation Grubbs catalyst) is reported. Phenylene ethynylene trimers are reduced via a Grignard reagent, followed by an intramolecular McMurry cyclization to give the cyclophenes. The cyclophenes are polymerized into soluble poly(para‐phenylene vinylene)s (PPV), which are analyzed in solution by NMR, UV–vis, and fluorescence spectroscopy. They are spin coated into amorphous, fluorescent thin films, and investigated by optical spectroscopy and cyclic voltammetry.

  相似文献   


11.
Polydiacetylenes have received intense attention on account of their well‐established chromic alterations that are detectable often by the naked eye, making them ideal for a variety of applications such as biosensory materials. These polymers have been fabricated in a variety of materials platforms including 3D crystals, 2D monolayers, and 0D spherical vesicles; however, 1D morphologies that might be useful for directional energy migration are less common. This article describes the development and current research efforts of protein‐based 1D nanowire‐like supramolecular assemblies with embedded polydiacetylenes.

  相似文献   


12.
A thermo‐, photo‐ and chemoresponsive shape‐memory material is successfully prepared by introducing α‐cyclodextrin (αCD) and azobenzene (Azo) into a poly(acrylate acid)/alginate (PAA/Alg) network. The tri‐stimuli‐responsive formation/dissociation of αCD‐Azo acts as molecular switches freezing or increasing the molecular mobility. The resulting film herein can be processed into temporary shapes as needed and recovers its initial shape upon the application of light irradiation, heating, or chemical agent independently. Furthermore, the agar diffusion test suggests that the α‐CD‐Alg/Azo‐PAA has good biocompatibility for L929 fibroblast‐like cells.

  相似文献   


13.
Type II photoinitiated self‐condensing vinyl polymerization for the preparation of hyperbranched polymers is explored using 2‐hydroxyethyl methacrylate (HEMA) or 2‐(dimethylamino)ethyl methacrylate (DMAEMA), and methyl methacrylate as hydrogen donating inimers and comonomer, respectively, in the presence of benzophenone and camphorquinone under UV and visible light. Upon irradiation at the corresponding wavelength, the excited photoinitiator abstracts hydrogen from HEMA or DMAEMA leading to the formation of initiating radicals. Depending on the concentration of inimers, type of the photoinitiator, and irradiation time, hyperbranched polymers with different branching densities and cross‐linked polymers are formed.

  相似文献   


14.
Integrating irreplaceable features of both covalent chemistry and noncovalent interactions into a single entity to maximize the applicability is highly desired. Here, a discovery of this type of hybrid, developed by Stupp and co‐workers, is developed, where a synergistic combination of covalent and noncovalent compartments enables them to assemble by each other perfectively. The covalent compartments can grow into polymer chains assisted by a supramolecular compartment. The supramolecular compartments can be reversibly removed and re‐formed to reconstitute the hybrid structure. The obtained soft materials can serve as functional platforms for molecular delivery or self‐repairing materials.

  相似文献   


15.
We report the functionalization of polypyrrole (PPy) with a “sticky” biomolecule dopamine (DA), which mimics the essential component of mussel adhesive protein. PPy is one of the most promising electrically conductive polymers with good biocompatibility. The research findings reveal that the DA functionalization enhances the dispersibility and stability of PPy in water and its film adhesion to substrate surface significantly. The electrical conductivity of PPy increases to a maximum value and then decreases with the increasing DA concentration. An optimal DA to pyrrole (Py) mole ratio is found to be between 0.1 and 0.2, at which both conductivity and adhesion of DA‐functionalized PPy has been improved.

  相似文献   


16.
In the last decades, metallopolymers have received great attention due to their various applications in the fields of materials and chemistry. In this article, a neutral 18‐electron exo‐substituted η4‐cyclopentadiene CpCo(I) unit‐containing polymer is prepared in a controlled/“living” fashion by combining facile click chemistry and ring‐opening meta­thesis polymerization (ROMP). This Co(I)‐containing polymer is further used as a heterogeneous macromolecular catalyst for atom transfer radical polymerization (ATRP) of methyl methacrylate and styrene.

  相似文献   


17.
Polymers with pendant phenoxyl radicals are synthesized and the electrochemical properties are investigated in detail. The monomers are polymerized using ring‐opening metathesis polymerization (ROMP) or free‐radical polymerization methods. The monomers and polymers, respectively, are oxidized to the radical either before or after the polymerization. These phenoxyl radicals containing polymers reveal a reversible redox behavior at a potential of −0.6 V (vs Ag/AgCl). Such materials can be used as anode‐active material in organic radical batteries (ORBs).

  相似文献   


18.
The glucose oxidase and glucose mediated formation of amphipilic copolymers of N‐(ferrocenoylmethyl)acrylamide (NFMA) and N,N‐diethylacrylamide (DEA) in aqueous cyclodextrin solution is presented. Thereby, NFMA is not only a comonomer but also part of the redox initiation system. The obtained copolymers contain NFMA units between 1 and 10 mol%. The molecular masses of the copolymers are dependent on the ferrocene content, whereupon molecular weights between 38 000 and 71 000 g mol−1 are achieved.

  相似文献   


19.
In this work, activated ester chemistry is employed to synthesize biocompatible and readily functionalizable polymersomes. Via aminolysis of pentafluorophenyl methacrylate‐based precursor polymers, an N‐(2‐hydroxypropyl) methacrylamide (HPMA)‐analog hydrophilic block is obtained. The precursor polymers can be versatile functionalized by simple addition of suitable primary amines during aminolysis as demonstrated using a fluorescent dye. Vesicle formation is proven by cryoTEM and light scattering. High encapsulation efficiencies for hydrophilic cargo like siRNA are achieved using dual centrifugation and safe encapsulation is demonstrated by gel electrophoresis. In vitro studies reveal low cytotoxicity and no protein adsorption‐induced aggregation in human blood serum occurs, making the vesicles interesting candidates as nanosized drug carriers.

  相似文献   


20.
A key feature of any living system is the ability to sense and react to the environmental stimuli. The biochemical characterization of the underlying biological sensors combined with advances in polymer chemistry has enabled the development of stimulus‐sensitive biohybrid materials that translate most diverse chemical and biological input into a precise change in material properties. In this review article, we first describe synthesis strategies of how biological and chemical polymers can functionally be interconnected. We then provide a comprehensive overview of how the different properties of biological sensor molecules such as competitive target binding and allosteric modulation can be harnessed to develop responsive materials with applications in tissue engineering and drug delivery.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号