首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The kinetics of the silver(I)-catalysed autoxidation of SO3 2– into SO4 2– in ammonia–ammonium nitrate buffer obeyed the rate law:R obs=k1 k2 K[AgI]T[SO3 2-}][O2] / ([NH3]+K[SO3 2-])(k1+k2[O2])The values of k 1, k 2/k –1 and K were found to be 1.2l mol–1 s–1, 5.3 × 102 l mol–1 and 0.6 respectively at 30 °C. Two alternative free radical mechanisms have been proposed.  相似文献   

2.
The photophysical properties of bonellin, a free-base chlorin, were studied in ethanolic solution. For the singlet excited state the following data were determined: an energy level, EBS= 187 ± 2kJ mol-1, a lifetime, τf= 6.3± 0.1ns at 298 K, and fluorescence quantum yields, φr= 0.07 ± 0.02 (298 K) and 0.20 ± 0.04 (77 K). The S1→ T intersystem crossing quantum yield was φisc= 0.85 ± 0.1. No phosphorescence was observed at 298 K and 77 K. Based on quenching experiments the triplet state energy level was determined to be EBT= 180 ± 20 kJ mol-1. A unimolecular decay rate constant, k1= (2.3 ± 0.5)· 103 s-1 at room temperature, and a molar absorption coefficient, εT443= 9500 ± 500 M-1 cm-1, were obtained for the triplet state. This species was quenched by O2 with ko2= (1.7 ±0.3)· 108M-1 s-1, and by benzoquinone with kq= (5.2 ± 0.3)-109M-1 s-1. The latter value, as well as the high value determined for the triplet annihilation rate constant, k2= (2 ± 0.5)· 109M-1 s-1, might reflect an electron transfer mechanism. Copper bonellin had a shorter triplet lifetime (>20 ns), which offers a possible explanation for its lack of photodynamic action.  相似文献   

3.
The reaction of meso-tetraphenylporphyrin with Mo(VI) oxide in boiling phenol resulted in a stable complex O=Mo(OH)TPP. Thermodynamics and kinetics of the reaction between (oxo)(hydroxo)molybdenumtetraphenyporphyrin with pyridine in toluene were studied by spectrophotometric method. This reaction was found to occur in three equilibrium elementary stages: replacement of OH by Py (K 1=9.1 × 103 l/mol, k 1=5.25 s–1 mol–1 l), the formation of dication (dipyridine)(hydroxo)molybdenumtetraphenylporphyrin as a result of cleavage of a double bond Mo=O (K 2=39.3 l/mol, k 2=1.83 × 10–2 s-1 mol–1 l), and the formation of cationic complex[Mo(Py)3TPP]3+ · 3OH (K 3=1.0 l/mol, k 3=1.19 × 10–3 s–1 mol–1 l).__________Translated from Koordinatsionnaya Khimiya, Vol. 31, No. 5, 2005, pp. 380–386.Original Russian Text Copyright © 2005 by Tipugina, Lomova, Motorina.  相似文献   

4.
The spectroscopic and kinetic data of the short lived intermediates obtained by the attack of H-radicals on fluoro-, chloro-, bromobenzene, benzylchloride and phenethylchloride in aqueous solutions were studied by pulse radiolysis technique. The first three yield cyclohexadienylradicals (k=1–1.5×109 dm3 mol?1 s?1) with characteristic absorption maxima in the region 220–330 nm. In the case of benzylchloride a quantitative abstraction of chlorine by the H-atoms is observed (k=9.5×108 dm3 mol?1 s?1) leading to the formation of the benzylradical (λmax=257, 303, 317.5nm). The attack of H-atoms on phenethylchloride can occur on the aromatic ring forming also a cyclohexadienylradical (k=2.0×109 dm3 mol?1 s?1, λmax=317, 323nm) as well as on the side chain (k=1.5×108 dm3 mol?1 s?1) yielding H2. The intermediates decay according to a second order reaction withk=2 to 4.6×109 dm3 mol?1 s?1. To elucidate reaction mechanisms, steady state radiolysis experiments on the same systems were performed.  相似文献   

5.
The polymerization of di-2[2-(2-methoxyethoxy)ethoxy]ethyl itaconate (1) with dimethyl 2,2-azobisisobutyrate (2) was studied, in benzene, kinetically and spectroscopically with the electron paramagnetic resonance (EPR) method. The polymerization rate (R p) at 50°C is given by the equation:R p=k[2]0.48 [1]2.4. The overall activation energy of polymerization was calculated to be 34 kJ·mol–1. From an EPR study, the polymerization system was found to involve EPR-observable propagating polymer radicals of 1 under the actual polymerization conditions. Using the polymer radical concentration, the rate constants of propagation (k p) and termination (k t) were determined. With increasing monomer concentration,k p(1.54.3 L·mol–1·s–1 at 50°C) increases andk t (1.0·1044.2·104 L·mol–1·s–1 at 50°C) decreases, which seems responsible for the high dependence ofR p on the monomer concentration. The activation energies of propagation and termination were calculated to be 11 kJ·mol–1 and 84 kJ·mol–1, respectively. For the copolymerization of 1(M 1) and styrene (M 2) at 50°C in benzene the following copolymerization parameters were found:r 1=0.2,r 2=0.53, Q1=0.57, ande 1=+0.7.  相似文献   

6.
The spectrocoulometric technique reported earlier is applied to verify the mechanism and to evaluate the contributions kBi of the individual bases to the total rate constant k of the hydrolysis of the tris (1,10-phenanthroline) iron(III) complex, Fe (phen)3+3. Both normal and “open-circuit” spectrocoulometric experiments are used. Partial rate constants for four bases in the acetate-buffered solutions are kH2O=(3.4±1.2) × 10?4s?1 (kH2O includes the H2O concentration), kOH=(1.20±0.06)×107 mol?1dm3s?1, kphen=(1.4±0.2) mol?1dm3s?1, kAc=(3.8±0.3)×10?2 mol?1dm3s?1, at 25°C and ionic strength 0.5 mol dm?3. The Fe(phen)3+3 hydrolysis, with (phen)2 (H2O) Fe-O-Fe (H2O) (phen)4+2 formation, is first order with respect to Fe (phen)3+3 and the bases present in the solution. The rate-determining step in the hydrolysis is the entry of a base to the coordinating sphere of the complex, as in the hydrolysis of the analogous 2,2′-bipyridyl complex.  相似文献   

7.
The bimolecular reactions in the title were measured behind shock waves by monitoring the O-atom production in COS? O2? Ar and CS2? O2? Ar mixtures over the temperature range between 1400 and 2200 K. A value of the rate constant for S + O2 → SO + O was evaluated to be (3.8 ± 0.7) × 1012 cm3 mol?1 s?1 between 1900 and 2200 K. This was connected with the data at lower temperatures to give an expression k2 = 1010.85 T0.52 cm3 mol?1 s?1 between 250 and 2200 K. An expression of the rate constant for CS2 + O2 → CS + SO2 was obtained to be k21 = 1012.0 exp(?32 kcal mol?1/RT) cm3 mol?1 s?1 with an error factor of 2 between 1500 and 2100 K.  相似文献   

8.
Summary The oxygenation of the potassium salts of alkylnitronates in absolute DMSO leads to potassium nitrite (nitrate) and the corresponding aldehydes or ketones at 40°C. Kinetic measurements for potassium 1-propylnitronate (K-1-PN) resulted in the rate law -d[K-1-PN]/dt = k2[K-1-PN][O2]. The rate constant, activation enthalpy, and entropy at 313.16 K are as follows: k/M-1 s-1 = (1.43±0.04), DH/kJ mol-1 = 57±10 DS/J mol-1 K-1 = -60±32. The presence of superoxide ion as a result of a SET from the nitronate to dioxygen was proved by NBT test.  相似文献   

9.
Cis- and trans-buten-2-yl free radicals are shown to react with butene-2 cis (Bc) and D2S in the following metathetical steps: giving rise to butenes-1 (B1). The initial formations of butene-1,3 d1 and total butene-1 in D2S? Bc mixtures have been studied in the initial pressure range 20–200 torr for B c, 0–41 torr for D2S and at 717–817 K. The main initiation and termination steps are shown to be: Assuming a rapid equilibrium between cis- and trans-C4H7?, ki ? 1015.5 exp(?85.5/RT) s?1 (RT in kcal mol?1) and kt ? 1013 mol?1 cm3 s?1, we get: k2c = 1.1 k2t = 1012.0 exp[(?9.25 ± 2)/RT] mol?1 cm3 s?1 and k2 + 1.5 k2′ ? 1012.1 exp[(?15.2 ± 2)/RT] mol?1 cm3 s?1. Isotopic effects relating to processes (2c′) + (2t′) and to (i′) have been evaluated.  相似文献   

10.
Rate constants for the reaction of superoxide O- 2 with various substrates were obtained through stationary electrode polarography theory and technique. In solvent acetonitrile, the substrate and the rate constants of the reaction O- 2 + AH- k2Product, are, AH = isopropanol (k2 < 0.01 M-1 s-1); ethanol (k2 = 1.42 × 102 M-1 s-1); methanol (k2 = 1.1 × 107 M-1 s-1), H2O (k2 = 1.0 × 105 M-1 s-1). In MeCN, O-2 was found to be rather unreactive towards glucose and acetone but it reacts with fructose and sucrose catalytically. However, in DMF2, O- 2reacts with glucose and fructose with k2 order of 105 M-1 s-1. The mechanism of the reaction of O- 2 with the substrates (AH) is proposed as O- 3 + AH k2O, AHk2 k-1 k [O2H + AH]-, k-2O2H + A- with k1 = 109 M-1 s-1 and k-1 = 108 -109 s-1. With these values of k-1 and k1, k k2(obs). The reversible E1/2 for O2 + e O- 2 in various solvents: MeCN, acetone, isopropanol, methanol, H2O were obtained either directly from the reversible voltammogram or from experimental voltammograms and the rate constants obtained (as above) using stationary electrode polargraphy theory; E1/2 being -0.82 (MeCN),-0.85 (acetone),-0.72 (isopropanol);-0.66 (MeOH),-0.56 (H2O) vs SCE.  相似文献   

11.
The solvent effect on the quenching of singlet oxygen by -phenyl-N-tert-butyl-nitrone /PBN/ has been investigated by laser flash photolysis technique registrating luminescence kinetics of1O2. The values of the rate constant /kq/ of the quenching were at 293 K: /9.0±0.4/×106, /4.4±0.3/×106 and /18.3±0.5/×106 M–1 s–1 in toluene, chloroform and acetonitrile, respectively. The rate constant for the chemical interaction between1O2 and PBN, was kr<1×105 M–1 s–1kq independently of the solvent. At temperatures between 223 and 293 K in toluene Eq=0.4±0.4 kJ mol–1.  相似文献   

12.
Summary The aquation ofcis-[(en)2Co(CO2H)2]+ tocis-[(en)2Co(OH2)(CO2H)]2+ is catalysed by Cu2+ and the rate equation, –d[complex]t/dt=(kCu[Cu2+]+kH [H+]) [complex)T is valid at [Cu2+]T=0.01–0.1, I=0.5 and [HClO4]=0.005 mol dm–3. The rate measurements are reported at 30, 35, 40 and 45°C and the rate and activation parameters for the Cu2+ and H+-catalysed paths are: kH(35°C)=(2.44±0.09)×10–2 dm3 mol–1 s–1, H=83±13 kJ mol–1, S=–8±42 JK–1 mol–1, k Cu (35°C)=(3.30±0.09)×10–3 dm3 mol–1 s–1, H=73.2±6.1 kJ mol–1, S=–55±20 JK–1 mol–1. The formate-bridged innersphere binuclear complex,cis-[(en)2Co{(O2CH)2Cu}]3+ may be involved as the catalytically active intermediate in the copper(II)-catalysed path, just as the corresponding H+-bridged species presumed to be present in the acidcatalysed path.  相似文献   

13.
Ligand substitution kinetics for the reaction [PtIVMe3(X)(NN)]+NaY=[PtIVMe3(Y)(NN)]+NaX, where NN=bipy or phen, X=MeO, CH3COO, or HCOO, and Y=SCN or N3, has been studied in methanol at various temperatures. The kinetic parameters for the reaction are as follows. The reaction of [PtMe3(OMe)(phen)] with NaSCN: k1=36.1±10.0 s−1; ΔH1=65.9±14.2 kJ mol−1; ΔS1=6±47 J mol−1 K−1; k−2=0.0355±0.0034 s−1; ΔH−2=63.8±1.1 kJ mol−1; ΔS−2=−58.8±3.6 J mol−1 K−1; and k−1/k2=148±19. The reaction of [PtMe3(OAc)(bipy)] with NaN3: k1=26.2±0.1 s−1; ΔH1=60.5±6.6 kJ mol−1; ΔS1=−14±22 J mol−1K−1; k−2=0.134±0.081 s−1; ΔH−2=74.1±24.3 kJ mol−1; ΔS−2=−10±82 J mol−1K−1; and k−1/k2=0.479±0.012. The reaction of [PtMe3(OAc)(bipy)] with NaSCN: k1=26.4±0.3 s−1; ΔH1=59.6±6.7 kJ mol−1; ΔS1=−17±23 J mol−1K−1; k−2=0.174±0.200 s−1; ΔH−2=62.7±10.3 kJ mol−1; ΔS−2=−48±35 J mol−1K−1; and k−1/k2=1.01±0.08. The reaction of [PtMe3(OOCH)(bipy)] with NaN3: k1=36.8±0.3 s−1; ΔH1=66.4±4.7 kJ mol−1; ΔS1=7±16 J mol−1K−1; k−2=0.164±0.076 s−1; ΔH−2=47.0±18.1 kJ mol−1; ΔS−2=−101±61 J mol−1 K−1; and k−1/k2=5.90±0.18. The reaction of [PtMe3(OOCH)(bipy)] with NaSCN: k1 =33.5±0.2 s−1; ΔH1=58.0±0.4 kJ mol−1; ΔS1=−20.5±1.6 J mol−1 K−1; k−2=0.222±0.083 s−1; ΔH−2=54.9±6.3 kJ mol−1; ΔS−2=−73.0±21.3 J mol−1 K−1; and k−1/k2=12.0±0.3. Conditional pseudo-first-order rate constant k0 increased linearly with the concentration of NaY, while it decreased drastically with the concentration of NaX. Some plausible mechanisms were examined, and the following mechanism was proposed. [Note to reader: Please see article pdf to view this scheme.] © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 523–532, 1998  相似文献   

14.
The rate coefficients of the reactions and were determined in a series of shock tube experiments from CN time histories recorded using a narrow-linewidth cw laser absorption technique. The ring dye laser source generated 388.44 nm radiation corresponding to the CN B2Σ+(v = 0) ← X2Σ+(v = 0) P-branch bandhead, enabling 0.1 ppm detection sensitivity. Reaction (1) was measured in shock-heated gas mixtures of typically 200 ppm N2O and 10 ppm C2N2 in argon in the temperature range 3000 to 4500 K and at pressures between 0.45 and 0.90 atm. k1 was determined using pseudo-first order kinetics and was found to be 7.7 × 1013 (±20%) [cm3 mol?1 s?1]. This value is significantly higher than reported by earlier workers. Reaction (2) was measured in two regimes. In the first, nominal gas mixtures of 500 ppm O2 and 10 ppm C2N2 in argon were shock heated in the temperature range 2700 K to 3800 K and at pressures between 0.62 and 1.05 atm. k2 was determined by fitting the measured CN profiles with a detailed mechanism. In the second regime, gas mixtures of 500 ppm O2 and 1000 ppm C2N2 in argon were shock heated in the temperature range 1550 to 1950 K and at pressures between 1.19 and 1.57 atm. Using pulsed radiation from an ArF excimer laser at 193 nm, a fraction of the C2N2 was photolyzed to produce CN. Pseudo-first order kinetics were used to determine k2. Combining the results from both regimes, k2 was found to be 1.0 × 1013 (±20%) [cm3 mol?1 s?1].  相似文献   

15.
The thermal decomposition of SO2 and of the primary dissociation product SO have been studied in shock waves by the uv absorption technique. The controversy about SO2 dissociation data from uv absorption signals was resolved and attributed to the extensive overlap of SO2 and SO uv absorption spectra. The derived rate coefficients are k1/[Ar] = 1015.6 exp(-420 kJmol?1/RT) cm3mol?1 s?1 (temperature range 3000–5000 K) for SO2 dissociation, and k3/[Ar] = 1014.6 exp(-448 kJmol?1/RT) cm3 mol?1 s?1 (temperature range 4000–6000 K) for SO dissociation. Anomalously high values of the apparent collision efficiencies βc in SO2 dissociation are attributed to marked contributions from excited electronic states.  相似文献   

16.
The transients resulting from triethylsilane (R3SiH) in airfree high purity methanol were studied by pulse radiolysis. Their total absorption spectrum shows a maximum at 265 nm (ϵ265 = 5300 dm3mol−1cm−1) and disappears by a second order reaction with a rate constant of 2k = 9.3±109dm3mol−1s−1. R3SiH reacts with solvated electrons (e-s) in methanol with k = 9.2±0.2) × 108dm3mol−1s−1. The R3S̊i radicals react selectively and efficiently with the CH3O̊ and C̊H2OH species resulting in the formation of triethylmethoxysilane (R3Si-OCH3) and triethylsilylmethanol (R3Si-C̊H2OH), respectively. R3Si-OC̊H3 is subsequently converted into various final products which were identified and their yields determined. A reaction mechanism is suggested for the explanation of the rather complicated reactions pathways.  相似文献   

17.
The reaction of NO with O2 has been investigated in aqueous solution. As demonstrated by ion chromatography, the sole product is NO2?. Kinetic studies of the reaction by stopped-flow methods with absorbance and conductivity detection are in agreement that the rate law is -d[O2]/dt=k[NO]2[O2] with k = 2.1 × 106 M?2 s?1 at 25°C. This rate law is unaffected by pH over the range from pH 1 to 13, and it holds with either NO or O2 in excess. By studying the reaction over the temperature range from 10 to 40°C, the following activation parameters were obtained: ΔH = 4.6 ± 2.1 kJ mol?1 and ΔS=?96 plusmn; 4 J K?1 mol?1. © 1993 John Wiley & Sons, Inc.  相似文献   

18.
V2O3(OH)4(g), Proof of Existence, Thermochemical Characterization, and Chemical Vapor Transport Calculations for V2O5(s) in the Presence of Water By use of the Knudsen-cell mass spectrometry the existence of V2O3(OH)4(g) is shown. For the molecules V2O3(OH)4(g), V4O10(g), and V4O8(g) thermodynamic properties were calculated by known Literatur data. The influence of V2O3(OH)4(g) for chemical vapor transport reactions of V2O5(s) with water ist discussed. ΔBH°(V2O3(OH)4(g), 298) = –1920 kJ · mol–1 and S°(V2O3(OH)4(g), 298) = 557 J · K–1 · mol–1, ΔBH°(V4O10(g), 298) = –2865,6 kJ · mol–1 and S°(V4O10(g), 298) = 323.7 J · K–1 · mol–1, ΔBH°(V4O8(g), 298) = –2465 kJ · mol–1 and S°(V4O8(g), 298) = 360 J · K–1 · mol–1.  相似文献   

19.
Cavity ring‐down (CRD) techniques were used to study the kinetics of the reaction of Br atoms with ozone in 1–205 Torr of either N2 or O2, diluent at 298 K. By monitoring the rate of formation of BrO radicals, a value of k(Br + O3) = (1.2 ± 0.1) × 10−12 cm3 molecule−1 s−1 was established that was independent of the nature and pressure of diluent gas. The rate of relaxation of vibrationally excited BrO radicals by collisions with N2 and O2 was measured; k(BrO(v) + O2 → BrO(v − 1) + O2) = (5.7 ± 0.3) × 10−13 and k(BrO(v) + N2 → BrO(v − 1) + N2) = (1.5 ± 0.2) × 10−13 cm3 molecule−1 s−1. The increased efficiency of O2 compared with N2 as a relaxing agent for vibrationally excited BrO radicals is ascribed to the formation of a transient BrO–O2 complex. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 125–130, 2000  相似文献   

20.
The title reactions have been studied at room temperature by applying the discharge flow method coupled with laser induced fluorescence detection of methoxy radicals and resonance fluorescence detection of bromine atoms. The following rate constants were determined: CH3O + Br Õ products (1) k 1 (298 K) = (3.4 ± 0.4 (1)) × 1013 cm3 mol-1 s-1, CH3O + Br2 Õ products (2) k 2 (298 K) £ 5 × 108 cm3 mol-1 s-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号