首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
丝素褐藻糖胶共混膜的结构与热性能   总被引:5,自引:0,他引:5  
丝素是蚕丝的主要成分,是人类最早应用的天然蛋白质之一,作为性能优良的天然纤维一直用于纺织行业.近年来,丝素膜由于具有良好的透气透氧性和较少的炎症反应,尤其是对活体组织具有良好的生物相容性的特点,在生物工程和生物医学领域得到广泛地研究,被用作酶的固定化材料和哺乳动物细胞培养的基质、体外组织工程支架和抗凝血材料等.  相似文献   

2.
采用溶液共混浇膜法制备了不同单宁含量的聚乙烯醇/单宁共混膜材料,利用扫描电镜(SEM)、广角X-射线衍射(WAXD)及示差扫描量热分析(DSC)对共混膜的结构进行了表征.结果表明,单宁和聚乙烯醇具有良好的相容性,聚乙烯醇的结晶能力及熔点均随单宁的加入量增大而稍降低.少量戊二醛的轻度交联作用使单宁在共混膜中非常稳定,在水中浸泡24 h后也仅有不到1.8%的单宁(相对膜中单宁总质量)渗出.接触法抗菌试验表明,所制备的共混膜对大肠杆菌(E.coli,CMCC 44103)、金黄色葡萄球菌(S.aureus,ATCC6538)和表皮葡萄球菌(S.epidermidis,ATCC 12228)都具有良好的抗菌能力,且随着单宁含量的升高而增强.  相似文献   

3.
纤维素/甲壳素共混膜的结构表征与抗凝血性能   总被引:20,自引:0,他引:20  
以 6wt %NaOH 4wt%尿素为纤维素的新溶剂 ,采用溶液共混法制备出纤维素 甲壳素共混膜 ,为甲壳素在碱性溶液中制膜提供了新的方法 .红外光谱、X 射线衍射、扫描电镜和力学性能、抗凝血性能测试结果表明 ,共混膜中甲壳素含量低于 4 0wt%时 ,纤维素与甲壳素分子间具有良好的相容性 ;在纤维素中引入适量甲壳素可提高共混膜的抗张强度 ,共混膜的干、湿态抗张强度在甲壳素含量 10wt%时最大 ,其值分别为 89 1MPa和 4 3 7MPa ,比纯态纤维素膜的干、湿态抗张强度分别提高了 6 7%和 11 5 % ;甲壳素的引入可明显降低血小板在共混膜表面的粘附、凝聚与变性 ,增大共混膜的抗凝血参数 ,甲壳素含量达到 5 0wt%时 ,该共混膜具有良好的抗凝血性能  相似文献   

4.
The effect of poly(ethylene glycol), PEG, on the enzymatic activity of glucose-6-phosphate dehydrogenase (G-6-PDH) in the oxidation of glucose-6-phosphate (G-6-P), using NADP+ as co-enzyme was investigated. The enzymatic activity was determined by means of spectrophotometry in three different media: pure Tris–HCl buffer, solution of PEG400 (20 wt.%) and of PEG4000 (20 wt.%), both in buffer. Comparing the enzymatic activity values measured in pure buffer with those in the polymer solutions, an increase in the enzymatic activity of 20% was observed in the presence of PEG400 as well as in PEG4000. Calorimetric studies indicated the absence of preferential interactions between G-6-PDH and PEG400 or PEG4000. Nevertheless, the interaction enthalpy, ΔHint, between NADP+ and PEG400 and PEG4000 amounted to −9.3 and −26.7 kJ/mol, respectively. Small angle X-ray scattering (SAXS) measurements were performed in a higher concentration range. Data analysis performed from SAXS curves by means of the intra-particle distance distribution function p(r) and Guinier plots yielded for G-6-PDH in pure buffer and PEG400 solutions radius of gyration, Rg, of about 70 Å and in PEG4000 solutions, Rg of about 40 Å. The latter has the same dimension as that found in the dimeric crystallographic structure of G-6-PDH, evidencing that G-6-PDH preserves its dimeric configuration in PEG4000 solution. On the contrary, different aggregates of G-6-PDH are formed in the presence of either buffer or PEG400. These findings show that the presence of PEG in solution can exert an effect on the enzyme structure and activity.  相似文献   

5.
The photodegradation behaviour of the collagen and poly(ethylene glycol) PEG blends has been studied by Fourier transform infrared spectroscopy (FTIR), UV-Vis spectroscopy and viscometry. Surface properties before and after UV irradiation were observed using optical microscope.Collagen and PEG were immiscible and the films obtained from the mixture were fragile with poor mechanical properties. The photochemical stability of the collagen and PEG blend was different from that of the single components. In general collagen/PEG blends are less stable under UV irradiation than pure collagen. The influence of PEG on the photochemical stability of collagen depends on its concentration in the blend. Microscope photographs showed that the surface characteristics of collagen and collagen/PEG blends in film form are not drastically altered after UV irradiation.  相似文献   

6.
Blend membranes (RCF1) were prepared from mixture solution of cellulose and silk fibroin (SF) in cuoxam by coagulating with acetone–acetic acid (4:1 by volume). The blend membranes were subjected to post-treatment with 10% NaOH aqueous solution, and their structure and properties were characterized by FT-IR, X-ray diffraction, DSC, SEM and DMTA. In previous work, cellulose/SF blend membranes (RCF2) prepared by coagulating with 10% NaOH aqueous solution formed a microporous structure, in which the SF as a pore former was almost completely removed from the membrane. However, when the blend membranes RCF1 were immersed in 10% NaOH aqueous solution for post-treatment, a strong hydrogen bonding between cellulose and SF inhibited the removal of SF. Although alkali is a good solvent for SF, the blend membranes RCF1 such obtained from cellulose and SF were alkali resistant. The crystallinity and the mean pore size of the blend membranes slightly decreased with increasing post-treatment time. This work provided a cellulose/silk blend membrane, which can be used under alkaline medium.  相似文献   

7.
The miscibility of chitosan (CS)/polar polymer blend membranes has been studied by positron annihilation and other methods. The miscibility of these two blend systems (CS/polyvinyl pyrrolidone (PVP) and CS/polyethylene glycol (PEG)) is good in the solution state due to the hydrogen interaction between the functional groups of the studied polymers. However, the miscibility of these two blend systems in the solid state is better in the CS/PVP system than in the CS/PEG system. The differences in miscibility of such two blend systems in the solid state were powerfully demonstrated with positron annihilation lifetime spectroscopy (PALS) methods. The CS/PEG blend system had much larger free-volume size and lower free-volume concentration. For their poorer interaction and phase separation fact, the molecules in the interfacial zone of the CS/PEG blend are less compact than the CS matrix. Therefore, the free-volume size in the interfacial zone was much larger than it in the CS matrix.  相似文献   

8.
Polyelectrolyte multilayer thin films were prepared via the alternate deposition of poly(allylamine hydrochloride) (PAH) and a blend of poly(acrylic acid) (PAA) and poly(styrenesulfonate) (PSS). When the pH of the blend solution was 3.5, the presence of PAA in this solution significantly increased the total film thickness. With only 10 wt % PAA in the blend adsorption solution, a large increase in film thickness was observed (92 nm cf. 18 nm). It was also demonstrated that the total amount of PSS adsorbed was enhanced by the presence of PAA in the blend solution, showing that the blend solution composition influenced that of the multilayer films. Thin films prepared with nanoblended layers also showed improved pH stability, because they exhibited reduced film rearrangement upon exposure to acidic conditions (pH = 2.5).  相似文献   

9.
A series of poly(D,L-lactic-co-glycolic acid) (PLGA)/poly(ethyleneglycol) (PEG) di-block copolymers were synthesized by ring-opening polymerization of D,L-lactide and glycolide with different molecular weights of monomethoxy polyethyleneglycol (mPEG) 750, 2000 and 5000 as an initiator. The bulk properties of these co-polymers were characterized by using 1H NMR spectroscopy, gel permeation chromatography, differential scanning calorimetry (DSC). Electron spectroscopy for chemical analysis (ESCA) results, in which the blend films with the di-block copolymers showed increasing surface oxygen atomic percentage with increasing PEG chain length, indicate that PEG chain segment in the di-block copolymers is surface oriented and enriched onto the surface of the blend films. The extent of protein adsorption onto the surface of these blend films was studied, using iodine radio-labeled human serum albumin, gamma globulin and human growth hormone. The protein adsorption amount was reduced for the blend films prepared with PLGA/PEG 750 and 2000 di-block copolymers, but increased to a great extent for PLGA/PEG 5000 di-block copolymer. This is due to the increased water uptake capacity of the blend film, which absorbed more protein molecules into a swollen polymer matrix in addition to surface adsorption.  相似文献   

10.
Regenerated cellulose blend film with thermoplastic polyurethane (TPU) was successfully prepared by coagulating cellulose/TPU solution with water in the presence of a thermoplastic polyurethane elastomer (TPU). Compared with pristine regenerated cellulose film, the toughness and thermal stability of the blend film was significantly improved. For example, the elongation at break was increased from 11% of pristine cellulose film to 51% of blend film with 20 wt. % TPU. The 50% weight loss temperature of this blend film was increased by 33 °C compared to neat cellulose. The relaxation transition temperature of cellulose was decreased with the addition of TPU through dynamic mechanical thermal analysis. The oxygen permeability was decreased from 2.3 × 10−10 cm3 cm/cm2 s Pa of pristine cellulose film to 0.08 × 10−10 cm3 cm/cm2 s Pa of the blend film with 20 wt.%. TPU The X-ray diffraction spectra showed that the crystallinity of cellulose decreased with incorporation of TPU. The images of scanning electron microscope discovered that there was good compatibility between cellulose and TPU. TPU was nano-dispersed in cellulose matrix. The blend film still maintained quite good transparency.  相似文献   

11.
The ternary hybrid films consisting of chitosan(CS),polyethylene glycol(PEG)and nano-sized silica which was surface-modified by amino groups(RNSA)were prepared.The structures of the blend membranes were characterized by attenuation total reflection-infrared spectroscopy(ATR-IR),X-ray diffraction(XRD),optical microscopy(OM)and differential scanning calorimetry (DSC).The results showed that the addition of silica affected not only the distribution and crystallinity of PEG on the sample surface.but also the phase coarseness and the crystalline structure of chitosan in the blend system.Moreover,PEG changed the crystalline structure of chitosan.Upon annealing(at 100℃ for 1 h),the blends would show the altered crystalline structure of chitosan,the reinforced phase coarseness.as well as the decreased miscibility and interaction between chitosan and PEG.  相似文献   

12.
V2O5/TiO2催化剂表面结构FT-IR发射光谱研究(II)   总被引:2,自引:0,他引:2  
用傅里哀变换红外发射光谱原位考察了V_2O_5/TiO_2催化剂在制备焙烧过程中担载偏钒酸铵的热分解步骤及其形成的表面活性相结构。偏钒酸铵在200 ℃左右分解, 在300 ℃之前完全转化为晶相V_2O_5。担载于TiO_2上的偏钒酸铵在100 ℃左右与TiO_2已产生强的化学作用, 在200 ℃之前已完全分解。对于10%(质量分数)V_2O_5/TiO_2催化剂其担载偏钒酸分解后在1020 cm~(-1)附近出现晶相V_2O_5的特征峰。但在500 ℃进一步焙烧后晶相V_5O_5的峰减弱并在1025—900 cm~(-1)区出现宽峰, 表明部分晶相V_2O_5可能转化为二维高分散的VO_x物种。2%(质量分数)V_2O_5/TiO_2催化剂在焙烧过程中也显示晶相V_2O_5的弱峰, 但同时也观察到属于VO_x物种的宽峰。进一步降低钒担载量, V_2O_5晶相特征峰逐渐消失, 而在1025—900 cm~(-1)区出现二维VO_x物种的宽峰。结果还表明傅里哀变换红外发射光谱是表征氧化物催化剂表面相结构的一种有力的方法。  相似文献   

13.
采用木质素磺酸钠作为亲水添加剂,通过浸没沉淀相转化法制备了木质素磺酸钠共混改性聚砜膜,以改善聚砜膜的亲水性,并用作正渗透膜的支撑层,以降低内浓差极化效应.利用扫描电子显微镜、衰减全反射傅里叶变换红外光谱仪、水接触角仪等研究了不同木质素磺酸钠添加量对聚砜膜的结构和表面性质的影响.结果表明,添加木质素磺酸钠后,聚砜膜的指状孔变得规整且狭长.水接触角实验证实添加木质素磺酸钠能改善聚砜膜的亲水性,当木质素磺酸钠含量为0.4 wt%时,聚砜膜的表面水接触角可降低至65°.正/反渗透测试装置分别用于表征正渗透膜的传质性质和结构参数.结果表明,以0.4 wt%木质素磺酸钠改性聚砜膜为支撑层的正渗透膜的水渗透性能(A=3.12×10~(-5) LMH×Pa~(-1))优于纯聚砜基底正渗透膜(0.76×10~(-5)LMH×Pa~(-1)),而且前者的结构参数(S=2010mm)远小于后者(3450mm),说明木质素磺酸钠改性聚砜膜有效弱化了正渗透膜的内浓差极化效应.  相似文献   

14.
Novel epitaxial-like packed, super aligned, mono-layered hollow fibrous membranes were prepared by co-axial electrospinning technology. PLLA pellets were dissolved in solvent mixture of dichloromethane and dimethyl formamide (DCM/DMF = 9:1) to prepare sheath solution dope with various concentrations (from 8 to 19 wt.%). Aqueous solution of poly-ethylene glycol (PEG) was used as core solution dope. During the electrospinning process, dope concentrations and feed rate ratios were adjusted, separately, to evaluate the formation of resulting membranes. With lower shell solution concentration (from 8 to 15 wt.%), the collected, flattened film showed arrangement of lower order. A stood-up film was clearly seen when concentration increased to 17 wt.% and higher. As the collecting time went longer, these fibers piled up and eventually, stood up as a thin film from the surface of collector. Increasing flow rate ratio (FRR) also resulted similar outcomes and verify the cause of this phenomenon. After washing with water, scanning electron microscopy (SEM) revealed sheets of mono-layered, micron-sized hollow fiber arrays which were well aligned and tightly packed, just like the epitaxial growth of some semiconducting materials. These perfectly aligned and tightly packed hollow fiber arrays can be considered as highly anisotropic scaffolds that mimic tissue structures, such as nerve tissue, vascular structure as well as other application.  相似文献   

15.
不锈钢金属丝网上TiO2纳米薄膜光催化剂的研究   总被引:21,自引:0,他引:21  
以钛酸正丁酯为原料,采用溶胶-凝胶法在金属丝网上制备了TiO2薄膜光催化剂.利用SEM,TEM,AES和Raman光谱研究了薄膜的表面及结构特性.以甲醛的光催化氧化反应为试验反应,考察了提拉次数、PEG浓度和焙烧温度对TiO2薄膜光催化剂活性的影响.将TiO2薄膜的结构特性与其光催化活性进行了关联.结果表明,在前驱体溶胶中加入10%PEG400,提拉3次并于400℃下焙烧可制得具有中孔结构和结晶完好的锐钛矿型TiO2薄膜,并具有最佳的光催化活性.  相似文献   

16.
The interactions and partitioning of polyethylene glycol 400 (PEG400) in hydroxypropyl methylcellulose (HPMC), polyvinyl alcohol (PVA) and their blends have been investigated by means of torsional braid analysis (TBA). PEG400 was shown to be a better plasticizer for HPMC than PVA, in agreement with solubility parameter predictions. Incorporation of PEG400 in blends of PVA and HPMC did not alter the incompatibility between the two homopolymers and plasticized both phases. The PEG400 content in the two phases was calculated by fitting Kelley-Bueche and quadratic expressions to the experimental data, enabling determination of the PEG400 partition coefficient. The data showed a selective partitioning of PEG400 in the HPMC phase for plasticizer contents less than 20% w/w. At higher concentrations, PEG400 continued to partition selectively into the HPMC phase for blends with 60 and 80% PVA but started partitioning in the PVA phase for blends with 20 and 40% PVA.  相似文献   

17.
聚乙烯综合性能优良且价格低廉,但由于较低的表面能和惰性化学结构,其着色性、生物相容性及制品表面涂饰性能差,与各种涂饰剂的粘结强度很低,限制了其用途的拓展,须进行表面改性.聚乙烯制品的表面改性方法已有不少研究报道[1~4],相对而言,采用添加表面改性剂的方法在工艺上仍最  相似文献   

18.
合成了含不同分子量柔性间隔基的扩链脲(Ui),并对其与双氰双胺共同固化环氧树脂体系的反应活性、抗冲击性能、动态力学性能、形态结构及贮存性能进行了考察。结果表明:含分子量为400的聚乙二醇柔性链的扩链脲/双氰双胺/环氧树脂固化体系的抗冲击强度较单纯双氰双胺/环氧树脂固化体系提高了7倍左右,其冲击试样断面电镜照片呈韧性断裂的特征。扩链脲的反应活性基本不受分子中聚乙二醇链段分子量的影响。环氧树脂/扩链脲/双氰双胺体系在50℃下贮存期可达1~2天。  相似文献   

19.
In this work, poly(vinyl butyral) (PVB) film originated from the mechanical separation of windshields was tested as an impact modifier of Polyamide-6 (PA-6). The changes undergone by PVB film during the recycling process and the blend manufacturing were evaluated by thermal analyses, infrared spectroscopy and loss on ignition. Blends of PA-6/original PVB film and PA-6/recovered PVB film were obtained in concentrations ranging from 90/10 to 60/40. The mechanical properties of the blends were investigated and explained in light of the blends morphologies, which in turns were correlated to the changes undergone by the PVB film during the recycling process. The original film presented a plasticizer content of 33 wt.%, which decreased to as low as 20 wt.% after the recycling and blend preparation processes. The PA-6/PVB film blends presented lower values of tensile strength and Young’s modulus than Polyamide-6, but all blends presented a dramatic increase in their toughness, with a special feature for the 40 wt.% blend, which resulted in a super toughened material (impact strength exceeding 500 J/m). Similar results were obtained with recovered PVB film and super tough blends were also obtained. The use of recovered PVB resulted in a smaller improvement of the impact strength due to the loss of plasticizer undergone during the recycling process. The morphological observations showed that if the interparticle distance is smaller than around 0.2 μm (critical value), the notched Izod impact strength values increase considerably and the fracture surface of blends exhibit characteristics of tough failure.  相似文献   

20.
A periodic striping pattern with microscale pore size is observed on the surface of thin films prepared by spin-casting from a polystyrene (PS) and polyethylene glycol (PEG) blend solution. The pattern is created by the convection generated by thermal gradients in the solution between the substrate and film solution during solvent evaporation, the radial flow of the spin-coated solution, and the primary and secondary phase separation of the PS and PEG solutions. The formation mechanism of the periodic porous stripe pattern is discussed, wherein the effects of the polymer blend weight ratio, polymer concentration, and drying rate on the formation of the periodic porous striping pattern are investigated using scanning electron and atomic force microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号