首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polystyrene (PS) particles in the size range of 1-7 µm, containing poly(ethylene glycol) or PEG on the particles surface, were prepared by multi-step seeded polymerizations. Micron-sized PS particles were first prepared by dispersion polymerization using 2,2'-azobisisobutyronitrile as initiator and polyvinyl pyrrolidone as stabilizer. Conventional swelling method was then used to increase the size of the PS particles with a large amount of styrene in presence of oil soluble initiator, benzoyl peroxide. In the final step, the PS particles have been used to carry out seeded polymerization with small amount of styrene in presence of poly(ethylene glycol)-azo or PEGA initiator with average molecular weights of the PEG chains of 200 and 3000 g mol-1 , respectively. The average size, size distribution, and surface morphology indicate that seeded polymerization in the final step with small amount of styrene in presence of PEGA is the best way to produce monodisperse polystyrene particles containing PEG near the particles surface.  相似文献   

2.
Highly monodispersed polystyrene (PS) nanoparticles were prepared via reversible addition fragmentation transfer (RAFT) living radical emulsion polymerization technique. Two types of novel sur-iniferters with different hydrophilic lipophilic balance (HLB) values, 4-diethythiocarbonylsulfanylmethyl-benzoic acid and 4-(2-hydroxyethyl)piperazine-1-carbodithioicacid benylether, were synthesized for the PS RAFT reaction and their chemical synthesis was identified using nuclear magnetic resonance spectroscopy. Scanning electron microscope and dynamic light scattering experiments showed that the size distribution of the particles prepared was highly monodispersed. The average particle size was affected by the type and concentration of sur-iniferters. It increased with decreasing sur-iniferter concentrations, and the use of sur-iniferters with higher HLB values led to increases of particle sizes, as the particles were growing from, initially, much larger monomer droplets. The surfaces of the nano particles prepared were ionically charged. The surface charge measured was −50 mV, which enabled particles to be stably dispersed in aqueous medium.  相似文献   

3.
Conventional dispersion polymerization and copolymerization of low-molecular weight (conventional) unsaturated monomers allows preparation of monodisperse and micronsize polymer particles. A similar behavior can be found in the surfactant-free dispersion polymerization of non-traditional vinyl monomers, unsaturated macromonomers. The latter systems allow preparation of random, comb-like, star-like and graft copolymers as well. An interesting alternative arises with the use of amphiphilic reactive macromonomers that contain a polymerizable group and aggregate into an organized structure -- a micelle. Under such conditions the high rate of polymerization and ultrafine (microparticles) polymer dispersions are generated. Thus, the surface-active macromonomers promote the formation of micelles and polymer growth within the main reaction loci -- polymer particles. Furthermore, the surface-active compounds can be formed during the copolymerization of hydrophilic macromonomer and hydrophobic low-molecular weight comonomer. The reactive surface-active oligomeric radicals are incorporated into the polymer matrix or the particle surface layer, which prevents them from subsequent migration. Besides, the covalently bound surface-active groups at the particle surface strongly increase the colloidal stability of final polymer dispersion. This article presents a review of the current literature in the field of the surfactant-free dispersion polymerization of the polyoxyethylene unsaturated macromonomers. Besides a short introduction into some kinetic aspects of radical polymerization of traditional monomers in homogeneous and disperse systems, we mainly focus on the organized aggregation of amphiphilic polyoxyethylene macromonomers, the characterization of amphiphilic graft copolymers and their aggregation properties, and radical copolymerization of polyoxyethylene macromonomers. We discuss the birth and growth of chains, the transfer of reaction loci from the continuous phase to polymer particles, the diffusion-controlled termination, association of amphiphilic reaction by-products, the particle growth by agglomeration, the particle nucleation, the deactivation of polymer chain growth and the colloidal stability. Effects of initiator type and concentration, the surface activity of macromonomer, the macromonomer type and concentration, temperature, additives and the type of continuous phase on the kinetics of polymerization, and colloidal parameters of the reaction system are also evaluated. Variation of the polymer coil density, the polymer-polymer interaction, and polymer-solvent interaction with the molecular weight, diluent and method (light scattering, the size exclusion, etc.) are discussed. Polymerization of macromonomers provides regularly branched polymers with varied branching density. Since both the degree of polymerization and the length of branches may be varied, polymeric materials with specific properties can be prepared.  相似文献   

4.
Micrometer-sized, hemispherical polymer particles were prepared as a result of cleavage of spherical Janus poly(methyl methacrylate) (PMMA)/polystyrene (PS) composite particle by treating particles with acetone/water solutions. The original PMMA/PS composite particles were prepared by the slow evaporation of toluene from homogeneous PMMA/PS/toluene droplets dispersed in aqueous solution of sodium dodecyl sulfate in advance. Appropriate molecular weights of PMMA and PS were necessary for occurrence of the cleavage of the Janus composite particle, resulting in PMMA and PS hemispherical particles. The cleavage depended on the composition of the acetone/water solution, which was explained by selective solvent absorption into the polymer phases. The results strongly support the cleavage mechanism of Janus composite polymer particles that had been proposed earlier.  相似文献   

5.
Monodisperse crosslinked polystyrene (PS) and polymethacrylate (PMA) beads of sizes greater than 1 μm in diameter are prepared by particle nucleation onto pre-existing polymer seeds in a multistage emulsion polymerization, in the absence of emulsifier. An adequate seed number concentration, which decreases with increasing seed size, is necessary to achieve monodisperse beads. Monodisperse multicomposition beads are prepared by polymerizing styrene onto PMA seeds, but not by polymerizing methyl methacrylate onto PS seeds. Phase separation in growing seed particles or surface polymerization following free radical capture may lead to the formation of asymmetric shaped particles.  相似文献   

6.
Cross-linked core-shell polymer particles were synthesized by free-radical dispersion copolymerization of 4-vinylpyridine (4VP) and various kinds of cross-linking reagents with methacryloyl-terminated polystyrene (PS) macromonomers in nonaqueous media such as 1,4-dioxane and cyclohexane. Well-defined particles were obtained by copolymerization of 4VP with ethylene glycol dimethacrylate (EGDM) in a dioxane medium. The particle diameters (D(n)=40-990 nm) decreased drastically both with increasing the feed concentration ratio of macromonomer to 4VP, [PS-M]/[4VP], and with increasing molecular weight of PS-M macromonomers. The particle size distribution (D(w)/D(n)) was in the range 1.02-1.10. PS-M macromonomers acted not only as comonomers but also as stabilizers. The particle diameters obtained in dioxane were smaller than those obtained in cyclohexane. Thus, we observed a tendency to smaller particle size as the media became more soluble for PS-M macromonomer.  相似文献   

7.
Voltammetry of vinylferrocene (VFc)-immobilized polystyrene(PS)-based latex particles was carried out in aqueous suspensions by changing the size of latex particles in order to investigate the dependence of the electroactivity of the particles on their size. The anodic peak current was controlled by diffusion of the latex. The voltammetric peak currents increased with an increase in the diameter of PS latex particles for a given analytical concentration of the particles, exhibiting the dependence on 1.5 powers of the diameter of the particles. The increase can be explained in terms of combination of the uniform distribution of VFc in the particle, the partial charge transfer, and the Stokes-Einstein equation for diffusion coefficients. The oxidation of VFc occurs in the restricted domain (0.07 microm) from a contact point of the particle with the electrode. The overall reaction mechanism is diffusion of the particle to the electrode, partial oxidation to VFc+, release of VFc+ from the particle to the solution, and reduction of the released VFc+.  相似文献   

8.
Adsorption of BSA on the amphiphilic PEG graft copolymer-coated particles   总被引:1,自引:0,他引:1  
The amphiphilic copolymers comprising several monomethoxy poly(ethylene glycol) (mPEG) and lauryl side chains were prepared and coated on the polystyrene (PS) particles to study the interactions between these particles and bovine serum albumin (BSA). The surface mPEG density and mPEG chain length were the primary parameters of interest. A significant fraction of the graft copolymer was washed away from the particle surface during five cycles of centrifugation-dispersion treatment, especially for the one with the smallest number of lauryl side chains. At pH 5, the BSA adsorption data did not follow the Langmuir isotherm model for the graft copolymer-modified particles. This was attributed to the presence of a surface mPEG layer that severely retarded the approach of BSA to the particle. The amount of the adsorbed BSA decreased with increasing the surface mPEG density. A mechanistic model was proposed to qualitatively describe the adsorption of BSA on the mPEG-containing particles and the native particles as well.  相似文献   

9.
Platinum nanoparticles prepared in reverse micelles have been used as catalysts for the electron transfer reaction between hexacyanoferrate(III) and thiosulfate ions. Nanoparticles of average diameter ranging between 10 and 80 nm have been used as catalysts. The kinetic study of the catalytic reaction showed that for a fixed mass of catalyst the catalytic rate did not increase proportionately to the decrease in particle size over the whole range from 10 to 80 nm. The maximum reaction rate has been observed for average particle diameter of about 38 nm. Particles below diameter 38 nm exhibit a trend of decreasing reaction rate with the decrease in particle size, while those above diameter 38 nm show a steady decline of reaction rate with increasing size. It has been postulated that in the case of particles of average size less than 38 nm diameter, a downward shift of Fermi level with a consequent increase of band gap energy takes place. As a result, the particles require more energy to pump electrons to the adsorbed ions for the electron transfer reaction. This leads to a reduced reaction rate catalyzed by smaller particles. On the other hand, for nanoparticles above diameter 38 nm, the change of Fermi level is not appreciable. These particles exhibit less surface area for adsorption as the particle size is increased. As a result, the catalytic efficiency of the particles is also decreased with increased particle size. The activation energies for the reaction catalyzed by platinum nanoparticles of diameters 12 and 30 nm are about 18 and 4.8 kJ/mol, respectively, indicating that the catalytic efficiency of 12-nm-diameter platinum particles is less than that of particles of diameter 30 nm. Extremely slow reaction rate of uncatalyzed reaction has been manifested through a larger activation energy of about 40 kJ/mol for the reaction.  相似文献   

10.
A series of five near-monodisperse sterically stabilized polystyrene (PS) latexes were synthesized using three well-defined poly(glycerol monomethacrylate) (PGMA) macromonomers with mean degrees of polymerization (DP) of 30, 50, or 70. The surface coverage and grafting density of the PGMA chains on the particle surface were determined using XPS and (1)H NMR spectroscopy, respectively. The wettability of individual latex particles adsorbed at the air-water and n-dodecane-water interfaces was studied using both the gel trapping technique and the film calliper method. The particle equilibrium contact angle at both interfaces is relatively insensitive to the mean DP of the PGMA stabilizer chains. For a fixed stabilizer DP of 30, particle contact angles were only weakly dependent on the particle size. The results are consistent with a model of compact hydrated layers of PGMA stabilizer chains at the particle surface over a wide range of grafting densities. Our approach could be utilized for studying the adsorption behavior of a broader range of sterically stabilized inorganic and polymeric particles of practical importance.  相似文献   

11.
Polystyrene (PS) (1)/Poly(n-butyl acrylate (BA)-methacrylic acid (MAA)) (2) structured particle latexes were prepared by emulsion polymerization using monodisperse polystyrene latex seed (118 nm) and different BA/MAA ratios. Three main aspects have been investigated: i) the polymerization kinetics; ii) the particle morphology as a function of reaction time; iii) the distribution of MAA units between the water phase and the polymer particles.The amount of MAA in the shell copolymer was found to be the main factor controlling the particle shape and morphology. The shape of the structured particles was, generally, non-spherical, and the shape irregularities increased as a particles was, generally, non-spherical, and the shape irregularities increased as a function of reaction time. At the beginning of the second stage reaction, new small particles were observed, which coalesced onto the PS seed as the polymerization proceeded. The distribution of the MAA groups in the latex particles and the serum was analyzed by alkali/back-acid titration, using ionic exchanged latexes. No MAA groups were detected in the latex serum. Due to the lowTg of the BA-MAA copolymers, alkali conductimetric titrations accounted for all the MAA groups on and within the polymer particles. Therefore, for these systems, this method is not only limited to a thin surface layer, as it is often assumed.  相似文献   

12.
This study describes the preparation of polyaniline (PANI) coated on the surface of monodispersed 400 nm polystyrene (PS) particles by in situ chemical oxidative polymerization. The monodispersed 400 nm PS particles served as cores were synthesized using the emulsion polymerization. Both images observed by field-emission scanning electron microscopy and transmission electron microscopy show the presence of a thin PANI layer uniformly coated on the surface of PS particle. The electrical conductivity of various amounts of PANI-coated PS particles is significantly increased about 13 orders of magnitude compared to that of the pristine PS particles. Differential scanning calorimetry (DSC) and thermogravimetric analyzer (TGA) were used to investigate the thermal stability and thermal degradation behavior of PS and PANI-coated PS particles. Both DSC and TGA curves revealed that the coating of a thin PANI layer on the surface of PS can drastically increase the thermal stability of PS matrix. TGA isothermal degradation data illustrate that the activation energy of the PANI-coated PS particle is larger than that of PS. This phenomenon can be attributed to the incorporation of PANI coating on the surface of PS particle caused a decrease in the degradation rate and an increase in the residual weight for the PANI-coated PS particle.  相似文献   

13.
The effect of molecular weight on the morphology of polystyrene (PS)/poly(methyl methacrylate) (PMMA) composite particles was investigated. PS/PMMA composite particles with different molecular weights (M*=MwPS+MwPMMA)/2 approximately 2x10(4)-1x10(6) g.mol(-1)) were prepared by the release of toluene (T) from PS/PMMA/T (1/1/24, w/w/w) droplets dispersed in an aqueous solution of polyoxyethylene nonylphenyl ether nonionic surfactant (Emulgen 911). As T evaporated, the spherical droplets phase separated, resulting in snowmanlike composite particles with Janus morphology. The nonspherical shape was closely related to the morphology, which depended on M*. The interfacial tension between the phase-separated PS and PMMA phases increased with an increase in M*, and this would allow the formation of the snowmanlike shape to decrease the interfacial area between the PS and the PMMA phases.  相似文献   

14.
Dropwise addition of water to blend solutions of block copolymer-stabilized quantum dots (QDs) and amphiphilic block copolymer stabilizing chains PS(665)-b-PAA(68) (PS = polystyrene, PAA = poly(acrylic acid)) in DMF induces self-assembly to form photoluminescent mesoscale QD/block copolymer colloids in water termed QD compound micelles (QDCMs). Here we demonstrate reproducible kinetic control of QDCM particle size and chain stretching within the external PAA stabilizing layer via changes in the initial polymer concentration and rate of water addition. By increasing the initial polymer concentration or decreasing the rate of water addition for a constant blend composition, larger QDCM particles are obtained. From a combination of transmission electron microscopy and dynamic light scattering, the thickness of the external PAA layer is determined for various QDCM sizes, showing that PAA stretching in the external brush layer increases with increasing particle size, reaching the limit of fully extended chains for sufficiently large particles. The photoluminescence spectra from QDCMs in pure water indicate that photoluminescence properties of the block copolymer-stabilized QD building blocks are retained during self-assembly. The demonstrated control of mesoscale particle size and conformation of the stabilizing PAA layer, among other related structural parameters, via simple variation of experimental conditions is a promising step toward the application of QDCM assemblies in photonics and biolabeling.  相似文献   

15.
以等规聚丙烯/乙烯-辛烯共聚物(PP/POE)合金颗粒为扩散基体, 苯乙烯(St)为扩散单体, 利用颗粒内受限聚合法制备了PP/POE/PS三元合金. 结果表明, 对于POE质量分数为20%~40%的PP/POE合金颗粒, St均可扩散至直径为4 mm的颗粒中心部位, 在POE非晶相中生成相尺寸为几十至几百纳米的PS球. 在PP/POE合金颗粒的不同部位, 因POE相尺寸及单体的吸附量不同, 生成的PS相尺寸也不同, 在颗粒中心部位生成的PS球最小. 研究了St在PP/POE(质量比80: 20)颗粒中的扩散-聚合行为, 结果表明, St在合金颗粒中的扩散速率和扩散饱和值远大于在纯PP颗粒中的扩散速率和饱和值, 这主要是因为PP/POE合金颗粒中的非晶POE相有利于扩散. 改变单体投料量可以获得具有不同PS含量的PP/POE/PS三元合金. 结晶性能研究结果表明, PS在非晶POE相中的优先分布会使POE相体积增大, 从而使PP的结晶温度和熔融温度降低. 随着PS量的进一步增大, 分布在PP中的PS对PP有结晶成核作用.  相似文献   

16.
Different samples of aminated latex of poly(styrene-co-Boc-aminostyrene) microspheres with mean diameters varying from 0.7 to 1.0 microm were prepared by dispersion copolymerization of styrene (ST) and Boc-aminostyrene (Boc-AMST). The copolymer compositions determined by nuclear magnetic resonance (1H NMR) were Boc-AMST/ST 6.9/93.1 mol/mol % (BOC7 sample) and Boc-AMST/ST 31.3/68.7 mol/mol % (BOC30 sample). The average molecular weights determined by gel permeation chromatography were 126 kDa (BOC7 sample) and 51 kDa (BOC30 sample). The latex containing NH-carbo-tert-butoxy groups (NH-Boc) were treated with 2 M HCl in isopropyl alcohol/water (1:1 vol/vol), at 50 degrees C for 3, 6, 9, 24, and 30 h, in order to control the extent of deprotection reaction of the NH-Boc. The deprotection reaction resulted in the formation of NH3+Cl- groups on the particle surfaces. The kinetic of the deprotection reaction was investigated by 1H NMR analyses and the yield varied from 20 to 40%. The resulting -NH3+Cl- groups on the microsphere surfaces were examined, in particular, by electron spectroscopy imaging (ESI) using an energy-filtered transmission electron microscope (EFTEM) that clearly demonstrated the presence of Cl on the particle surfaces. Scanning electron photomicrographs recorded for the above samples showed that the particle morphology was maintained after the acidic treatment.  相似文献   

17.
We prepared surface-grafted polystyrene (PS) beads with comb-like poly(ethylene glycol) (PEG) chains. To accomplish this, conventional gel-type PS beads (35-75 microm) were treated with ozone gas to introduce hydroperoxide groups onto the surface. Using these hydroperoxide groups, poly(methyl methacrylate) (PMMA, Mn= 22,000-25,000) was grafted onto the surface of the PS beads. The ester groups of the grafted PMMA were reduced to hydroxyl groups with lithium aluminum hydride (LAH). After adding ethylene oxide (EO) to the hydroxyl groups, we obtained the PS-sg-PEG beads, which had a rugged surface and a diameter of 80-150 microm. We could obtain several kinds of the PS-sg-PEG beads by controlling the chain lengths of the grafted PMMA and the molecular weights of the PEG chains. The grafted PEG layer was about 30-50 microm thick, which was verified from the cross-sectioned views of the fluorescamine-labeled beads. These fluorescence images proved that the beads possessed a pellicular structure. Furthermore, we found that the surface-grafted PEG chains had the characteristic property of reducing non-specific protein adsorption on the beads.  相似文献   

18.
The adsorption behavior of poly(oxyethylene) nonyl phenyl ether nonionic emulsifier molecules onto polystyrene (PS) and styrene-methacrylic acid copolymer [P(S-MAA)] particles dispersed in D2O was evaluated by in situ 1H NMR measurements at room temperature. The resonance due to the protons of the emulsifier molecules was only observed. Normalized NMR integrals of the resonance due to the protons of hydrophobic groups (nonyl and phenyl groups) and the hydrophilic group, poly(oxyethylene) chain, at a certain concentration of the emulsifier decreased with an increase in the total surface area of the PS particles dispersed in the system. The decrease for the hydrophobic groups was much larger than that for the hydrophilic groups. In the dispersion system of P(S-MAA) particles, ionized carboxyl groups at the particle surface decreased the amount of the emulsifier adsorbed.  相似文献   

19.
李云兴 《高分子科学》2014,32(6):711-717
Herein a facile and controllable heterocoagulation between polystyrene (PS) microspheres and multiwalled carbon nanotubes (MWCNTs) is introduced based on colloid thermodynamics. The MWCNTs play the role of steric stabilizer for stabilizing the metastable PS microspheres and thus immobilize spontaneously on the surface of PS microspheres. The synthesized MWCNTs-coated PS composite particles have been extensively characterized by scanning electron microscopy, transmission electron microscopy, thermogravimetry and Raman spectroscopy. The results indicate that the structure and morphology of the resultant MWCNTs-coated PS composite particles are significantly affected by the weight ratio of PS and MWNCTs and the amount of poly(vinylpyrrolidone) that is injected into PS dispersion before they are mixed with MWCNTs. Therefore, these composite particles have the potential to produce MWCNTs-based composite materials with controllable mass loading and dispersity of MWCNTs.  相似文献   

20.
Zhao Y  Cho SK 《Lab on a chip》2006,6(1):137-144
This paper describes a new microparticle sampler where particles can be efficiently swept from a solid surface and sampled into a liquid medium using moving droplets actuated by the electrowetting principle. We successfully demonstrate that super hydrophilic (2 microm and 7.9 microm diameter glass beads of about 14 degrees contact angle), intermediate hydrophilic (7.5 microm diameter polystyrene beads of about 70 degrees contact angle), and super hydrophobic (7.9 microm diameter Teflon-coated glass beads and 3 microm size PTFE particles of over 110 degrees contact angles) particles on a solid surface are picked up by electrowetting-actuated moving droplets. For the glass beads as well as the polystyrene beads, the sampling efficiencies are over 93%, in particular over 98% for the 7.9 microm glass beads. For the PTFE particles, however, the sampling efficiency is measured at around 70%, relatively lower than that of the glass and polystyrene beads. This is due mainly to the non-uniformity in particle size and the particle hydrophobicity. In this case, the collected particles staying (adsorbing) on the air-to-water interface hinder the droplet from advancing. This particle sampler requires an extremely small amount of liquid volume (about 500 nanoliters) and will thus be highly compatible and easily integrated with lab-on-a-chip systems for follow-up biological/chemical analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号