首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Commercial non-food packaging materials of four different matrices (paper, low density polyethylene (LDPE), polyethylene-polypropylene (PE-PP) and high density polyethylene (HDPE)) were examined for the content of Cr, Ni, Cu, Zn, As, Mo, Cd, Sb, Ba, Hg, Tl, Pb and U. The examined samples (0.17–0.35 g) were digested in HNO3 and H2O2 (papers, LDPE and PE-PP) and in HNO3, H2SO4 and H2O2 (HDPE) using microwave assisted high pressure system. The inductively coupled plasma-time of flight-mass spectrometry (ICP-TOFMS) has been employed as the detection technique. All measurements were carried out using internal standardization. Yttrium and rhodium (50 ng g−1) were used as internal standards. The detection and quantification limits obtained were in the range of 0.005 ng g−1 (52Cr) to 0.51 ng g−1 (66Zn) and 0.015 μg g−1 (52Cr) to 2.02 μg g−1 (66Zn) of dry mass, respectively. The evaluated contents (mg kg−1) of particular elements in the examined materials were as follows: 0.22–219; <1.05–9.03; 1.25–112; <2.02–449; <0.98–<1.30; <0.36–2.06; <0.29–113; <0.22–44.1; <0.06–57.4; <0.66–<0.88; <0.08–0.24; <0.13–1222 and <0.08–0.44 for Cr, Ni, Cu, Zn, As, Mo, Cd, Sb, Ba, Hg, Tl, Pb and U, respectively.  相似文献   

2.
Inductively coupled plasma mass spectrometry (ICP-MS) and atomic fluorescence spectrometry (AFS) coupled with gas chromatography (GC) have been evaluated as element specific detectors for the determination of methylmercury in marine samples. Detection limits for methylmercury chloride, obtained using ICP-MS and AFS, were 0.9 and 0.25 pg as Hg, respectively. Methylmercury was determined in marine tissue reference materials IAEA 142 and NIST 8044 mussel homogenate, and DOLT-2 dogfish liver by GC–AFS, with found values of 45±7, 26±4, and 671±41 ng g−1, compared with certified values of 47±4, 28±2, and 693±53 ng g−1. The analyses of IAEA 142 and NIST 8044 were repeated using GC–ICP-MS, with found values of 48±9 and 30±3 ng g−1, respectively. Methylmercury was determined in real samples of ringed seal and beluga whale, with found values of 801±62 and 2830±113 ng g−1, respectively.  相似文献   

3.
Polystyrene–divinylbenzene (8%) has been functionalised by coupling it through an ---N=N--- group with 6-mercaptopurine. The resulting chelating resin has been characterised by using elemental analysis, thermogravimetric analysis and infrared spectra. The resin is highly selective for Hg(II) and Ag(I) and has been used for preconcentrating Hg(II) and Ag(I) prior to their determination by atomic absorption spectrometry. The maximum sorption capacity for Hg(II) and Ag(I) was found to be 1.74 and 0.52 mmol g−1, respectively, over the pH range 5.5–6.0. The calibration range for Hg(II) was linear up to 10 ng ml−1 with a 3σ detection limit of 0.02 ng ml−1; the calibration range for Ag(I) was linear up to 5 μg ml−1 with a detection limit of 29 ng ml−1. The recoveries of the metals were found to be 99.7±3.8 and 101.3±4.1% at the 95% confidence level for both Hg(II) and Ag(I). In column operation, it has been observed that Hg(II) and Ag(I) in trace quantities can be selectively separated from geological, medicinal and environmental samples.  相似文献   

4.
R.M. Callejon  A.M. Troncoso  M.L. Morales   《Talanta》2007,71(5):1610-2097
A complete methodology for the determination of chloroanisoles and chlorophenols in cork material is proposed. The determination is accomplished by means of a previous liquid–solid extraction followed by stir bar sorptive extraction (SBSE) coupled to gas chromatography–mass spectrometry (GC–MS). Two different liquid–solid extraction experiments were conducted and eight compounds considered (2,6-dichloroanisole, 2,4-dichloroanisole, 2,4,6-trichloroanisole, 2,4,6-trichlorophenol, 2,3,4,6-tetrachloroanisole, 2,3,4,6-tetrachlorophenol, pentachloroanisole and pentachlorophenol). From the results obtained we can conclude that high volume extraction extending extraction time up to 24 h is the best choice if we have to release compounds from the inner surfaces of cork stoppers. Recovery percentages ranged from 51% for pentachloroanisole to 81% for 2,4-dichloroanisole. This method allows the determination of an array of compounds involved in cork taint at very low levels from 1.2 ng g−1 for 2,4,6-tricholoroanisole to 23.03 ng g−1 for 2,3,4,6-tetrachlorophenol.  相似文献   

5.
Analytical procedures have been developed for the reliable determination of 19 trace elements (Ag, Al, Ba, Bi, Cd, Co, Cr, Cu, Fe, Mn, Pb, Rb, Sb, Sc, Sr, Tl, U, V, Zn) in ice samples at pg g−1 and fg g−1 concentrations using ICP-sector field mass spectrometry (ICP-SMS). Concentrations of most elements in the high purity water and doubly distilled HNO3 employed were distinctly lower than previously reported values. The accuracy of the results was carefully evaluated using the certified water reference material SLRS-4. Contributions of unwanted trace elements due to acidification of the ice samples (0.5% HNO3) to the total element budget amounted to only 0.001 pg g−1 for Bi, 0.34 pg g−1 for Cr, 0.2 pg g−1 for Fe, 0.004 pg g−1 for Pb, 0.00015 pg g−1 for U and 0.0025 pg g−1 for V: compared to the concentrations of the metals in ice these are negligible. The use of a detergent (0.05%) in the rinsing solution (0.5% HNO3), helped to reduce memory effects by 59–98%, depending on the element considered; this resulted in shorter washing times between samples (i.e. 1 min) and improved analysis time. Adopting strict clean room procedures, the detection limit for Pb (0.06 pg g−1) is a factor of ten lower than the current state-of-the-art. Compared to previous studies, the improved LODs obtained here for other trace elements amount to 2× (Ag), 4× (Sb), 5× (Ba), 6× (Cu, Mn, U), 9× (Bi), 13× (Cd), 18× (Fe) and 21× (V). The developed analytical protocols were successfully applied to the determination of selected trace elements in age-dated ice samples from the Canadian High Arctic. The toxic trace element Tl (median: 0.16 pg g−1; range: 0.03–1.32 pg g−1) and the lithogenic reference element Sc (0.53 pg g−1; 0.06–2.9 pg g−1) have been determined in a polar ice core for the first time.  相似文献   

6.
Guo R  Zhou Q  Cai Y  Jiang G 《Talanta》2008,75(5):1394-1399
A new method is developed for the determination of perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA) in sewage sludge samples. The analytes in sewage sludge samples are extracted by methanol and formic acid, cleaned by C18 solid-phase extraction, then separated, identified and quantitated by liquid chromatography/quadrupole time-of-flight mass spectrometry (LC–QTOF-MS). A C18 column (150 mm × 2.1 mm, 3.5 μm) with gradient elution of MeOH–H2O (60:40) containing 5 mmol/L ammonium acetate and MeOH–H2O (80:20) is used for the chromatographic separation. [M−K] ions at m/z 498.93 for PFOS and [M−COOH] ion at m/z 368.97 for PFOA are selected for QTOF-MS in the negative electrospray ionization mode. The detection limits for PFOS and PFOA in sewage sludge samples are 0.5 and 0.8 ng/g, respectively. The spiked recoveries are in the range of 85–114 and 71–98% for PFOS and PFOA, respectively. The proposed method is successfully applied to the analysis of PFOS and PFOA in 16 sewage sludge samples from China. PFOS and PFOA are detected in most sewage sludge samples and the concentrations of PFOS and PFOA are up to 5383 and 4780 ng/g (oven dry weight), respectively.  相似文献   

7.
A liquid chromatographic–tandem mass spectrometric (HPLC-MS/MS) method is proposed for the identification and quantification of tylosin in honey. Sample treatment involves an extraction in a Tris buffer at pH 10.5, followed by a solid-phase clean up step on an Oasis HLB column. Roxithromycin was used as the internal standard. Chromatographic separation of tylosin and roxithromycin was performed on an XTerra MS C18 column (100 mm × 2.1 mm i.d., 5 μm) using a gradient of aqueous 0.01 M ammonium acetate pH 3.5 and acetonitrile as the mobile phase, at a flow rate of 0.25 ml min−1. The method was validated according to the guidelines laid down by the Commission Decision 2002/657/EC. Tylosin residues were confirmed by MS/MS experiments considering the appropriate identification points. All validation parameters such as Cc (lower than 3 ng g−1), Ccβ (lower than 5 ng g−1), recovery and precision were assessed on the basis of the “critical ion” (less intense ion permitting unambiguous identification of the analyte).  相似文献   

8.
An inductively coupled plasma mass spectrometer (ICP-MS) equipped with a dynamic reaction cell™ (DRC) was used for the determination of Ca, Fe and Zn in milk powder samples. The effect of the operating conditions of the DRC system was studied to get the best signal-to-noise (S/N) ratio. The potentially interfering 40Ar+, 40Ar16O+, 40Ca16O+, 48Ca16O+ and 32S16O16O+ at the masses m/z 40, 56 and 64 were reduced in intensity significantly by using CH4 as the reaction cell gas in the DRC while a q-value of 0.7 was used. The limits of detection for 40Ca, 56Fe and 64Zn estimated from the external calibration graphs were 1, 0.01 and 0.001 ng ml−1, respectively, which correspond to 1000, 10 and 1 ng g−1 in the original powder sample. This method was applied to the determination of Ca, Fe and Zn in NIST SRM 1549 non-fat milk powder and two milk powder samples purchased locally. The results for the reference sample agreed satisfactorily with the reference values; the accuracy of the determination was better than 3.8, 18 and 2.2% for Ca, Fe and Zn, respectively. The results for which no reference value was available were also found to be in good agreement between different isotopes. Precision (R.S.D.) between sample replicates was better than 10% for all the determinations.  相似文献   

9.
Liu Y  Wen B  Shan XQ 《Talanta》2006,69(5):1254-1259
The analyses of low pentachlorophenol (PCP) in soils and earthworms require a sensitive and reliable analytical method. In this paper, several derivatization methods and extraction solvents were compared systematically. The derivatization reagents included acetic anhydride, 2,3,4,5,6-pentafluorobenzyl bromide (PFBBr) and diazomethane. Hexane, acetone, hexane–acetone (1:1), dichloromethane and methanol were used as the extraction solvents. PFBBr derivatization showed the highest sensitivity. The derivatization parameters of PFBBr including the amount of PFBBr, the power and irradiation time of microwave were optimized. As a result, 200 μl of PFBBr (10%) at 150 W of microwave oven for 30 min achieved the best result. The PFBBr derivatization method had the detection limit of 0.07 μg l−1 of PCP. Extraction by a mixture of hexane and acetone (1:1) showed the best recoveries. The recommended method was used to determine the low PCP in soils irrigated by wastewater and earthworms incubated in the corresponding soils. The concentrations of PCP in soils were in the range of 1.38–179 ng g−1, while those in earthworms were 11.2–262 ng g−1. The recoveries of the surrogate standard (trichlorophenol) ranged from 81.1% to 107%, demonstrating the merit of the method.  相似文献   

10.
A laser ablation system using a Nd:YAG laser was coupled both to a quadrupole inductively coupled plasma (ICP) mass spectrometer and to a double-focusing sector field ICP mass spectrometer. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was applied for the determination of long-lived radionuclides in a concrete matrix. The investigated samples were two laboratory standards with a concrete matrix, which we doped with different long-lived radionuclides (e.g. 99Tc, 232Th, 233U, 237Np) from the ng g−1 to μ g−1 concentration range and an undoped concrete material (blank). Detection limits for long-lived radionuclides in the 10 ng g−1 range are reached for LA-ICP-MS using the quadrupole mass spectrometer. With double-focusing sector field ICP-MS, the limits of detection are in general one order of magnitude lower and reach the sub ng g−1 range for 233U and 237Np. A comparison of mass spectrometric results with those of neutron activation analysis on undoped concrete sample indicates that a semiquantitative determination of the concentrations of the minor and trace elements in the concrete matrix is possible with LA-ICP-MS without using a standard reference material.  相似文献   

11.
An inductively coupled plasma mass spectrometer (ICP-MS) was used as an ion chromatographic (IC) detector for the speciation analysis of arsenic and selenium. The arsenic and selenium species studied included arsenite [As(III)], arsenate [As(V)], monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenobetaine (AsB), selenite [Se(IV)] and selenate [Se(VI)]. Gradient elution using (NH4)2CO3 and methanol at pH 9 allowed the chromatographic separation of all species in less than 12 min. Effluents from the IC column were delivered to the nebulization system of ICP-DRC-MS for the determination of arsenic and selenium. The potentially interfering 38Ar40Ar+ and 40Ar40Ar+ at the selenium masses m/z 78 and 80 were reduced in intensity by approximately 3 orders of magnitude by using 0.6 mL min−1 CH4 as reactive cell gas in the DRC while an Rpq value of 0.3 was used. Meanwhile, arsenic was determined as the adduct ion 75As12CHH+ at m/z 89, which is more sensitive than 75As. The limits of detection for arsenic and selenium were in the range of 0.002–0.01 ng mL−1 and 0.01–0.02 ng mL−1, respectively, based on peak height. The relative standard deviation of the peak areas for five injections of 5 ng mL−1 As and Se mixture was in the range of 2–4%. The concentrations of arsenic and selenium species have been determined in urine samples collected locally. The major As and Se species in urines were AsB, DMA and probably selenosugar at concentration of 20–40, 15–19 and 17–31 ng mL−1, respectively. The recoveries were in the range of 94–105% for all the determinations. This method has also been applied to determine various arsenic compounds in two fish samples. In this study, a simple and rapid microwave-assisted extraction method was used for the extraction of arsenic compounds from fish. The arsenic species were quantitatively leached with an 80% v/v methanol solution in a focused microwave field during a period of 5 min.  相似文献   

12.
A new po1y(acrylphenylamidrazone phenylhydrazide) chelating fiber is synthesized from polyacrylonitrile fiber and used for preconcentration and separation of trace Ga(III), In(III), Bi(III), V(V) and Ti(IV) from solution (5–50 ng ml−1 Ti(IV) or V(V) and 50–500 ng ml−1 Ga(III), In (III) or Bi(III) in 1000–100 ml of solution can be enriched quantitatively by 0.15 g of fiber at a 4 ml min−1 flow rate in the pH range 5–7 with recoveries >95%). These ions can be desorbed quantitatively with 20 ml of 4 M hydrochloric acid at 2 ml min−1 from the fiber column. When the fiber which had been treated with concentrated hydrochloric acid and washed with distilled water until neutral was reused eight times, the recoveries of the above ions by enrichment were still >95%. Two-hundred-fold to 10 000-fold excesses of Cu(II), Zn(II), Ca(II), Mn(II), Cr(III), Fe(III), Ba(II) and Al(III) caused little interference in the determination of these ions by inductively coupled plasma-atomic emission spectrometers (ICP-AES). The relative standard deviations for enrichment and determination of 50 ng ml−1 Ga, In or Bi and 10 ng ml−1 V or Ti are in the range 1.2–2.7%. The contents of these ions in real solution samples determined by this method were in agreement with the certified values of the samples with average errors <3.7%.  相似文献   

13.
Qian Luo  Minghung Wong  Zongwei Cai   《Talanta》2007,72(5):1644-1649
Analytical method using mass spectrometric techniques was applied for the determination of polybrominated diphenyl ethers (PBDEs) in freshwater fishes. Fish samples collected from Nanyang River contaminated by the recycling electron-wastes (e-wastes) materials were prepared by using Soxhlet extraction and multiple-step column chromatographic clean-up. PBDEs were determined by gas chromatography (GC) coupled with ion trap mass spectrometry (for mono- to hepta-BDEs) and quadrupole mass spectrometry (for BDE-209). The method performance was evaluated with the recovery of 13C-labeled internal standards and with the analysis of certified reference biota. The obtained recoveries ranged from 75 to 125% with a relative standard deviation of lower than 10% for 16 PBDE congeners. The total PBDE (ΣPBDE) concentrations in fishes showed the following trend: grass carp < mud carp < crucian carp < silver carp < carp. ΣPBDE concentrations in the abdomen, back and tail muscles of carp ranged from 766, 458 and 530 ng/g w.w., and 53, 52, 45 ng/g w.w. in grass carp, respectively. The ΣPBDE concentrations in abdomen muscles were no significantly higher than in back and tail muscles in carp, crucian carp, grass carp and mud carp. PBDE congener concentrations in muscles correlated well with their lipid content. BDE-47 and BDE-28 were the most abundant congeners followed by BDE-17, BDE-15, BDE-66, BDE-154 and BDE-153 in fishes collected from Guiyu.  相似文献   

14.
A comparison of chiral separation and analysis of selenomethionine in breast and formula milk, using high performance liquid chromatography (HPLC) on a glycopeptide teicoplanin-based chiral stationary phase (Chirobiotic T), coupled to atomic fluorescence spectrometry (AFS) and inductively coupled plasma (ICP) MS detectors has been performed. The coupling HPLC-microwave-assisted digestion hydride generation requires on-line post-column analytes treatment, and a severe sample clean-up for fat and proteins elimination using centrifugation and ultrafiltration. Underivatized -selenomethionine enantiomers were completely resolved in 10 min using unbuffered water mobile phase at 1 ml min−1 flow. Good selectivity and sensitivities (detection limits 3.1 and 3.5 ng ml−1 as Se for - and -selenomethionine, respectively) were obtained, and method robustness and simplicity, together to the low cost of AFS detector, makes it suitable for infant milk routine analysis. HPLC–ICP-MS coupling exhibits very low detection limits (0.9 ng ml−1, as Se) for each -selenomethionine enantiomers, but the method suffers from matrix influence, that produces a poor S/N ratio and low reliability.

The methods were applied to breast and formula milk samples with recoveries of 80% of the total selenium presence, which is attributable to the existence of other unknown species. -Selenomethionine was the only isomer present in breast milk, but a 30% of -selenomethionine was also detected in formula milk.  相似文献   


15.
A comprehensive analytical method based on liquid chromatography electrospray ionization tandem mass spectrometry (LC–ESI–MS/MS) with negative ionization mode has been developed for measuring of alkylphenols and bisphenol A in beverage samples. Concentration and clean up of samples were performed on 200 mg OASIS HLB solid extraction cartridges. The effects of mobile phases and additives on ionization were assessed. The recoveries for each compound ranged from 76.7 to 96.9% and reproducibilities were represented as having relative standard deviation (R.S.D.) below 10%. The limits of quantification (LOQ) of the method under multiple-reaction monitoring (MRM) acquisition mode were 0.04, 0.03 and 0.2 ng L−1 for 2 L of mineral drinking water and 2.0, 1.8 and 8.0 ng L−1 for 50 mL of soda beverages.  相似文献   

16.
A simple procedure was developed for the direct determination of As(III) and As(V) in water samples by flow injection hydride generation atomic absorption spectrometry (FI–HG–AAS), without pre-reduction of As(V). The flow injection system was operated in the merging zones configuration, where sample and NaBH4 are simultaneously injected into two carrier streams, HCl and H2O, respectively. Sample and reagent injected volumes were of 250 μl and flow rate of 3.6 ml min−1 for hydrochloric acid and de-ionised water. The NaBH4 concentration was maintained at 0.1% (w/v), it would be possible to perform arsine selective generation from As(III) and on-line arsine generation with 3.0% (w/v) NaBH4 to obtain total arsenic concentration. As(V) was calculated as the difference between total As and As(III). Both procedures were tolerant to potential interference. So, interference such as Fe(III), Cu(II), Ni(II), Sb(III), Sn(II) and Se(IV) could, at an As(III) level of 0.1 mg l−1, be tolerated at a weight excess of 5000, 5000, 500, 100, 10 and 5 times, respectively. With the proposed procedure, detection limits of 0.3 ng ml−1 for As(III) and 0.5 ng ml−1 for As(V) were achieved. The relative standard deviations were of 2.3% for 0.1 mg l−1 As(III) and 2.0% for 0.1 mg l−1 As(V). A sampling rate of about 120 determinations per hour was achieved, requiring 30 ml of NaBH4 and waste generation in order of 450 ml. The method was shown to be satisfactory for determination of traces arsenic in water samples. The assay of a certified drinking water sample was 81.7±1.7 μg l−1 (certified value 80.0±0.5 μg l−1).  相似文献   

17.
Zhihua Wang  Shujun Wang  Min Cai 《Talanta》2007,72(5):1723-1727
A graphite furnace atomic absorption spectrometry (GFAAS) method with optical temperature control for the determination of trace cadmium in paint samples is described. Optical temperature control was superior in many respects to current temperature control. The sensibility increased by 60%, the linear range widened by 60%, and the life of graphite tube showed a 200–300% increase because atomization temperature was lowered distinctly and atomization time was shortened. Use of lanthanum chloride as a matrix modifier was investigated. The linear range of calibration curve was 0–24 ng mL−1. The detection limit was 9.6 ng L−1. The characteristic mass was 3.0 pg. The method also resulted in excellent reproducibility (≤2.5% R.S.D.) at such low levels, and the recovery of added cadmium in paint samples was from 94.6% to 102%. This method is readily applicable to the determination of cadmium in paint samples.  相似文献   

18.
A direct immersion solid-phase microextraction coupled with gas chromatography-electron capture detection (SPME-GC-ECD) method was optimized and validated for the quantitative determination of 18 organochlorine pesticides in ground water. Ionic strength, stirring speed, adsorption and desorption time and pH were some of the parameters investigated in order to select the optimum conditions for SPME with a 50/30 DVB/CAR/PDMS fiber coating. The SPME-GC/ECD method showed good linear response below 10 ng L−1 with R2 values in the range of 0.9950–0.9997. The repeatability of the measurements were lower than 10%. Values of relative recoveries located within the acceptable range (80–120%). Limits of quantification (LOQ) from 4.5 × 10−3 to 1.5 ng L−1 were obtained. On average 8 organochlorines were found per sample, even so all the 18 organochlorines were quantified among them. Substances such as endrin ketone, γ-BHC and β-BHC were the pesticides determined in larger concentration (0.06–305 ng L−1), while methoxychlor and aldrin in smaller amounts (0.151–1.55 ng L−1). Measured levels of organochlorine pesticides were above the limits established by Brazilian regulations.  相似文献   

19.
The mass fractions of Hg and methylmercury, in two certified reference materials, NIST2710 and DORM-2, have been determined by total and species-specific isotope dilution analysis (IDA), respectively, and uncertainty budgets for each analysis calculated. The mass fraction of Hg in NIST2710 was determined by ID using multicollector sector field inductively coupled plasma mass spectrometry (MC-SF-ICP-MS) whilst the mass fraction of methylmercury in DORM-2 was determined using HPLC coupled with quadrupole ICP-MS.

The extent of equilibration between the spike and the particulate bound mercury compounds was studied temporally by monitoring the 200Hg:199Hg isotope amount ratio and by determining the total amount of Hg in the liquid phase. For the NIST2710 complete equilibration was only achieved when concentrated HNO3 in combination with a microwave digestion was employed, and good agreement between the found (31.7±4.0 μg g−1, expanded uncertainty k=2) and certified (32.6±1.8 μg g−1) values was obtained. For DORM-2 complete equilibration of methylmercury between the liquid and solid phases was achieved when using 50:50 H2O:CH3OH (v/v) and 0.01% 2-mercaptoethanol as the solvent. Even though only 50% of the analyte was extracted into the liquid phase, complete equilibration was achieved, hence, the found methylmercury mass fraction (4.25±0.47 μg g−1, expanded uncertainty k=2) was in good agreement with the certified value (4.47±0.32 μg g−1).  相似文献   


20.
A HPLC method with automated column switching and UV-diode array detection is described for the simultaneous determination of Vitamin D3 and 25-hydroxyvitamin D3 (25-OH-D3) in a sample of human plasma. The system uses a BioTrap precolumn for the on-line sample cleanup. A sample of 1 ml of human plasma was treated with 2 ml of a mixture of ethanol–acetonitrile (2:1 (v/v)). Following centrifugation, the supernatant was evaporated to dryness under a stream of dry and pure nitrogen. The residue was reconstituted in 250 μL of a solution of methanol 5 mmol l−1 phosphate buffer, pH 6.5 (4:1 (v/v)), and a 200 μl aliquot of this solution was injected onto the BioTrap precolumn. After washing during 5 min with a mobile phase constituted by a solution of 6% acetonitrile in 5 mmol l−1 phosphate buffer, pH 6.5 (extraction mobile phase), the retained analytes were then transferred to the analytical column in the backflush mode. The analytical separation was then performed by reverse-phase chromatography in the gradient elution mode with the solvents A and B (Solvent A: acetonitrile–phosphate buffer 5 mmol l−1, pH 6.5; 20:80 (v/v); solvent B: methanol–acetonitrile–tetrahydrofuran, 65:20:15 (v/v)). The compounds of interest were detected at 265 nm. The method was linear in the range 3.0–32.0 ng ml−1 with a limit of quantification of 3.0 ng ml−1. Quantitative recoveries from spiked plasma samples were between 91.0 and 98.0%. In all cases, the coefficient of variation (CV) of the intra-day and inter-day-assay precision was ≤2.80%. The proposed method permitted the simultaneous determination of Vitamin D3 and 25-OH-D3 in 16 min, with an adequate precision and sensitivity. However, the overlap of the sample cleanup step with the analysis increases the sampling frequency to five samples h−1. The method was successfully applied for the determination of Vitamin D3 and 25-OH-D3 in plasma from 46 female volunteers, ranging from 50 to 94 years old. Vitamin D3 and 25-OH-D3 concentrations in plasma were found from 4.30–40.70 ng ml−1 (19.74 ± 9.48 ng ml−1) and 3.1–36.52 ng ml−1 (7.13 ± 7.80 ng ml−1), respectively. These results were in good agreement with data published by other authors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号