首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The knowledge about the adsorption and diffusion properties (specially about diffusion) of aluminophosphate molecular sieves is very scarce in the literature. These materials offer interesting properties as adsorbents as they have a polar framework and do not contain charge-balancing cations. In this work, the adsorption isotherms of nitrogen, methane and carbon dioxide over an AlPO4-11 sample synthesized in our laboratories have been measured with a volumetric method at 25, 35, 50 and 65 °C over a pressure range up to 110 kPa. The adsorption capacities of each gas are determined by the strength of interaction with the pore surface (carbon dioxide > methane > nitrogen). The equilibrium selectivity to carbon dioxide is quite high with respect to other adsorbents without cations due to the polarity of the aluminophosphate framework. The adsorption Henry’s law constants and diffusion time constants of nitrogen, methane and carbon dioxide in the synthesized AlPO4-11 material have been measured from pulse experiments. A pressure swing adsorption (PSA) process for recovering methane from a carbon dioxide/methane mixture (resembling biogas) has been designed using a dynamic model where the measured adsorption equilibrium and kinetic information has been incorporated. The simulation results show that the proposed process could be simpler than other PSA processes for biogas upgrading based on cation-containing molecular sieves such as 13X zeolite, as it can treat the biogas at atmospheric pressure, and it requires a lower pressure ratio, to produce high purity methane with high recovery.  相似文献   

2.
A laboratory batch study has been performed to study the effect of various physic-chemical factors such as initial metal ion concentration, solution pH, and amount of adsorbent, contact time and temperature on the adsorption characteristics of zinc (Zn2+) metal ions onto kaolin. It has been found that the amount of adsorption of zinc metal ion increases with initial metal ion concentration, contact time, solution pH but decreases with the amount of adsorbent and temperature of the system. Kinetic experiments clearly indicate that adsorption of zinc metal ion (Zn2+) on kaolin is a two steps process: a very rapid adsorption of zinc metal ion to the external surface is followed by possible slow decreasing intra-particle diffusion in the interior of the adsorbent which has also been confirmed by intra-particle diffusion model. The equilibrium time is found to be in the order of 60 min. Overall the kinetic studies showed that the zinc adsorption process followed pseudo-second-order kinetics among pseudo-first-order and intra-particle diffusion model. The different kinetic parameters including rate constant are determined at different initial metal ion concentration, solution pH, amount of adsorbent and temperature respectively. The equilibrium adsorption results are analyzed by both Langmuir and Freundlich models to determine the mechanistic parameters associated with the adsorption process. The value of separation factor, RL from Langmuir equation also gives an indication of favorable adsorption. Finally thermodynamic parameters are determined at three different temperatures and it has been found that the adsorption process is exothermic due to negative ΔH° accompanied by decrease in entropy change and Gibbs free energy change (ΔG°).  相似文献   

3.
The paper describes a new calorimetric measuring vessel for the commercial precision calorimetry system LKB 8700. The vessel was tested by measuring the enthalpy of solution of CaF2 in water and the enthalpies of immersion of different minerals in water. The results of these experiments are comparable to previously published data. The vessel is suitable for accurately measuring enthalpies greater than 50 mJ. The results are discussed in relation to the heat treatment of the minerals.It can be assumed that this calorimetric vessel will allow us to measure enthalpies of displacement. Thus it should be possible to investigate in future experiments the selective adsorption in the liquid phase on a solid surface which has been immersed in the liquid before starting the adsorption experiment. These measurements may afford a reliable approach to the investigation of the flotation process.  相似文献   

4.
The enthalpy changes accompanying the dilution and ionization of poly(L-glutamic acid) in water have been measured at 25 degrees C for two degrees of polymerization (DP = 115 and DP = 480) at various degrees of ionization, alpha, for a concentration range from about 0.2 to 0.002 monomol/L. The heat of dilution displays an unusual dependence on the degree of ionization, which is in sharp contrast to the behavior of other weak carboxylic polyelectrolytes, such as poly(acrylic acid). The exothermic heat effects observed at low values of alpha become endothermic for the region where the helix-coil transition is most pronounced, and for high degrees of ionization, they are exothermic again. Evidently, an endothermic heat effect, produced by an additional conformational transition in the dilution process, is superimposed on the exothermic enthalpy of dilution, and it overweighs the latter in the region of alpha where the conformational transition is prevailing. The calorimetric titration curve, which gives the dependence of the heat of ionization, deltaH(i), on alpha, has a maximum and is typical for poly(carboxylic acids) which undergo pH-induced conformational transition, such as poly(methacrylic acid). The values of deltaH(i) obtained at two polymer concentrations indicate that the enthalpy of ionization depends on the polypeptide concentration.  相似文献   

5.
The kinetics of nonisothermal adsorption from a limited volume with consideration of the dependence of the differential heat of adsorption and the intracrystalline diffusion coefficient on the degree of filling were mathematically modeled. A model of the adsorption kinetics which explains the appearance of extremes on the experimental kinetic adsorption curves in adsorption of water by CaA zeolite was proposed. It was shown that a decrease in the differential heat of adsorption with an increase in the degree of filling is a necessary condition for the appearance of extremes on the kinetic adsorption curves.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 6, pp. 1228–1233, June, 1990.  相似文献   

6.
The alkaline activation of metakaolin leads to high mechanical performance inorganic polymers. A JAF conduction calorimeter was used to follow the reaction of metakaolin with NaOH solutions. The alkaline activation of metakaolin to yield a cementitious material is an exothermic process involving three steps: an initial and very fast process of dissolution, which is strongly exothermic, followed by an induction period in which the heat exchange rate decreases, and finally an exothermic step of reaction reactivation in which cementitious materials precipitate and after which the heat exchange rate decreases. The calorimetric curves lead to the following findings: - The induction period is lengthened as the NaOH solution concentration and the liquid percentage increase. - The induction period is shortened as the temperature increases. - The total heat increases as the liquid percentage and the NaOH concentration increase. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
This paper considers the formation of dead zones in the porous catalyst pellets due to the chemical reaction and diffusion. We established and investigated the model with nonisothermal reaction of fractional order and activated temperature-dependent diffusivity. The effects of process parameters, catalyst shape, and reaction and diffusion parameters on the formation of the dead zone are studied numerically and characterized by the critical Thiele modulus. The lower bounds for the critical Thiele modulus are derived analytically in terms of process parameters for exothermic and endothermic reactions and verified numerically. The critical Thiele modulus increases with increasing Arrhenius number for diffusion and decreasing Arrhenius number for reaction in the case of exothermic reactions, whereas the opposite trends hold for the endothermic reactions. The critical Thiele modulus also increases with increasing fractional reaction order as well as with decreasing energy generation function, and increasing Biot numbers for heat and mass transfer. Moreover, the critical Thiele modulus is the highest for spherical pellets and the lowest for pellets with planar shape.  相似文献   

8.
Isoprene monomer (IPM) is a colorless, volatile liquid obtained from petroleum or coal tar that occurs naturally in many process plants. It is used chiefly to make synthetic rubber. Our study used calorimetric approaches to conduct thermal analysis and hazard assessment of aluminum oxide (Al2O3) and IPM relevant studies. Differential scanning calorimetry, thermal activity monitor III, thermogravimetry, and vent sizing package 2 were used to discuss thermal instability reaction of Al2O3, which adsorbed IPM, and find every possible reason for cases of fire to prevent any future recurrence of the package store and transport related hazards. By means of calorimetric analysis technology, we can observe thermal decomposition or mass loss for different adsorbed concentrations of IPM and Al2O3 to discuss the related thermal stability parameters, such as exothermic onset temperature (T 0), heat of decomposition (ΔH d), self-accelerating exothermic rate (dT dt ?1), pressure rise rate, and maximum reaction temperature (T max). Then, we can understand the potential hazard factors that contribute to disasters related to processing, transport, and storage of security controls and reaction process design.  相似文献   

9.
The acid hydrolysis under ultrasound stimulation of solventless tetraethoxysilane(TEOS)-water mixtures was studied at 40°C, by means of a heat flux calorimetric method, as a function of the initial water/TEOS molar ratio (r) ranging from 2 to 10. The method is based on the time record of the exothermic heat peak of hydrolysis, arising after an induction time under ultrasound stimulation, which is a measure of the reaction rate. The hydrolysed quantity was found to be approximately independent of the water/TEOS molar ratio, even for r < 4. Polycondensation reaction takes place mainly for low water/TEOS molar ratio in order to supply water to allow almost complete hydrolysis. The overall process of dissolution and hydrolysis has reasonably been described by a previous modelling. The dissolution process of water in TEOS, under ultrasound stimulation and acid conditions, was found to be rather dependent of the alcohol produced in the hydrolysis reaction instead of the initial water quantity present in the mixture.  相似文献   

10.
The modulated temperature differential scanning calorimetric method (MT-DSC) yields three temperature dependent signals, an underlying heat capacity curve from the underlying heat flow rate (corresponding to the conventional DSC signal), and a complex heat capacity curve with a real part (storage heat capacity) and an imaginary part (loss heat capacity). These curves have been measured in the cold crystallization region for poly(ethylene terephtalate) with a modified Perkin-Elmer DSC-7. The underlying curve shows the well known large exothermic crystallization peak. The storage heat capacity shows a step change which reproduces the change in heat capacity during crystallization. This curve may be used as baseline, to separate the crystallization heat flow rate from the underlying heat flow rate curve. The loss heat capacity curve exhibits a small exothermic peak at the temperature of the step change of the storage curve. It could be caused by changes of the molecular mobility during crystallization.Dedicated to Professor Wunderlich on the occasion of his 65th birthday  相似文献   

11.
Eggshell particles (ESP) of a definite mesh size have been prepared and characterized through infrared and scanning electron microscopy. Adsorption of some styryl pyridinium dyes (SP-1 and SP-2) has been studied on ESP surface from water-ESP interface and the effects of adsorbate concentration, adsorbent dosage, temperature, salts, and the contact time have been examined. A first time study of the effect of water-structure making salt (kosmotroph) such as NaCl and structure breaking salt (chaotroph) such as KCl and NH4SCN on the adsorption process on ESP has been reported. Both types of salts have opposing effects on the adsorption of SP-1 dye; however, in case of SP-2 dye both of them show similar effects. The adsorption process is found to follow a second order kinetics. Thermodynamic studies show the occurrence of a physical adsorption with exothermic energetic. The adsorption follows Langmuir isotherm model and the area of coverage has been calculated to show the impact of hydrogen bonding on the adsorption phenomenon.  相似文献   

12.
Long time relaxation at temperatures below the calorimetric glass transition causes reversible structural changes in metallic glasses. The resulting enthalpy recovery was measured by means of DSC in Zr46.8Ti8.2Cu7.5Ni10Be27.5- and Pd40Cu30Ni10P20-bulk glass annealed for different times at 553 K and 542 K, respectively. Relaxation times of about 106 s and 104 s, respectively, were determined. The diffusion coefficients of B, Fe and Co were measured above and below the calorimetric glass transition temperature. Whereas the temperature dependence of these diffusion coefficients in the non-relaxed glasses shows “non-linear” Arrhenius behaviour with a break near the glass transition, the diffusion in the long time relaxed glasses follows a uniform temperature dependence over the entire temperature range with considerably reduced diffusion coefficients below the glass transition. This behaviour can be reversed by annealing the relaxed glasses again at higher temperatures indicating the strong effect of the reversible structural relaxation on the diffusion coefficients.  相似文献   

13.
The bulk phase kinetics of an epoxy (DGEBA) /amine (DDS) thermoset have been studied using DSC, FTIR, and 13C-NMR. In the absence of catalyst, the reaction was found to involve a main exothermic reaction between epoxide and amine hydrogen and a side reaction between tertiary amine formed in the main reaction and epoxide. The main reaction was exothermic while the side reaction had no discernable exotherm. Etherification did not occur to any significant extent. Since only the main reaction is exothermic, DSC was very useful for studying the main reaction kinetics. FTIR was used for determining whether epoxide and amine hydrogen were consumed at different rates as a way of following the side reaction. An IR band previously unused by other investigators was used to monitor the amine hydrogen concentration. NMR confirmed the above mechanism by identifying the formation of a quaternary ammonium ion/alkoxide ion pair as a reaction product of tertiary amine and epoxide. This mechanism has been successfully fit to a rate law valid over the entire extent of reaction. The rate constant for the epoxy/amine addition reaction was found to depend on hydroxide concentration (extent), reaction temperature, and glass transition temperature and included contributions from uncatalyzed and autocatalyzed parts. The side reaction (quaternary ammonium ion formation) formed weak bonds which did not affect the overall system Tg. Both reactions were second order. The rate constants for the main reaction first increase with increasing extent due to autocatalysis by hydroxide before decreasing due to the diffusion limit caused by gelation and vitrification. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
Summary A commercial activated charcoal has been tested as an adsorbent for the removal of neodymium ions from aqueous solutions. The adsorption behavior of neodymium ions on activated charcoal from aqueous solutions has been studied as a function of shaking time, neodymium ions concentration and concentration of different acids. Results reveal that the adsorption equilibrium is attained within 30 minutes, and diffusion of neodymium ions into the pores of activated charcoal controls the adsorption process. The adsorption process follows the first order kinetics. The Langmuir isotherm equation was obeyed well in the whole range of concentration studied. The influence of different cations and anions on the adsorption of neodymium ion from aqueous solutions have also been investigated. Approximately 98% of neodymium ions adsorbed onto activated charcoal could be recovered with 40 ml of 3M HNO3 solutions.  相似文献   

15.
The heat of reaction has been measured for vapor deposition of metal atoms onto clean polymeric substrates. These calorimetric measurements introduce a new technique for the study of metal-polymer interfacial chemistry. Results for three systems are reported here, calcium, chromium, and copper on PMDA-ODA polyimide, and widely different reaction heats are observed in each case. Our results show that calcium deposition is very exothermic at low coverages, with an initial heat approaching 610 kJ/mol. In the case of chromium deposition, the initial heat is quite low, 125 kJ/mol or less, an affect we attribute to the energetic cost of polymer bond disruption. The data for copper deposition show that calorimetry can be used to study fine details of the nucleation and growth process of the metal island film.  相似文献   

16.
Synthetic Na-magadiite sample was used for organofunctionalization process with N-propyldiethylenetrimethoxysilane and bis[3-(triethoxysilyl)propyl]tetrasulfide, after expanding the interlayer distance with polar organic solvents such as dimethylsulfoxide (DMSO). The resulted materials were submitted to process of adsorption with arsenic solution at pH 2.0 and 298±1 K. The adsorption isotherms were adjusted using a modified Langmuir equation with regression nonlinear; the net thermal effects obtained from calorimetric titration measurements were adjusted to a modified Langmuir equation. The adsorption process was exothermic (ΔintH=−4.15-5.98 kJ mol−1) accompanied by increase in entropy (ΔintS=41.32-62.20 J k−1 mol−1) and Gibbs energy (ΔintG=−22.44−24.56 kJ mol−1). The favorable values corroborate with the arsenic (III)/basic reactive centers interaction at the solid-liquid interface in the spontaneous process.  相似文献   

17.
Developing an ideal and cheap adsorbent for adsorbing heavy metals from aqueous solution has been urgently need. In this study, a novel, effective and low-cost method was developed to prepare the biochar from lettuce waste with H3PO4 as an acidic activation agent at a low-temperature (circa 200 °C) hydrothermal carbonization process. A batch adsorption experiment demonstrated that the biochar reaches the adsorption equilibrium within 30 min, and the optimal adsorption capacity of Cd(II) is 195.8 mg∙g−1 at solution pH 6.0, which is significantly improved from circa 20.5 mg∙g−1 of the original biochar without activator. The fitting results of the prepared biochar adsorption data conform to the pseudo-second-order kinetic model (PSO) and the Sips isotherm model, and the Cd(II) adsorption is a spontaneous and exothermic process. The hypothetical adsorption mechanism is mainly composed of ion exchange, electrostatic attraction, and surface complexation. This work offers a novel and low-temperature strategy to produce cheap and promising carbon-based adsorbents from organic vegetation wastes for removing heavy metals in aquatic environment efficiently.  相似文献   

18.
In this study, a novel method for manufacturing aluminum foam sandwich (AFS) panels via self‐propagating high temperature synthesis (SHS) has been introduced and investigated. In this method, a powder mixture of metallic aluminum and copper oxide was placed in core–sheet interface. Sandwich panel was then heated under static pressure. During heating, SHS reaction (3CuO + 2Al = Al2O3 + 3Cu, ΔH < 0) occurred in the interface. The generated heat from this exothermic reaction caused sheets to join the core by melting the interface and nearby. In order to evaluate the shear strength of the interface, the shear test was applied on manufactured sandwich panels, and its results were compared with those obtained from testing the sandwich panels which were produced by diffusion bonding process. Furthermore, by the aid of energy dispersive spectrometer (EDS) and X‐ray diffraction (XRD) analyses, the formation of copper in the core–sheet interface and its diffusion into the sheets and the core were investigated. In addition, by plotting the hardness values of the panels' sheets across distance, it was found that the generated heat of the exothermic reaction caused a local melting of the panel sheets and the core. These results approved that core to sheet joining in metal foam sandwich panels took place because of the SHS reaction. Significantly, this new method could be applied as a proper and alternative method for production of AFS panels. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Measurements have been performed on the influence of a small amount of water on adsorption properties of alkanes (C3 to C6) and olefins (C3 and C4) in NaX zeolite. Adsorption capacity and heat of adsorption have been measured by a Volume Step method. Kinetics has been measured by Thermal Frequency Response method and the results have been compared with the results obtained by PFG-NMR.It has been found that water reduces the adsorption capacity especially at low adsorbate concentration. The heat of adsorption is slightly reduced by water. The kinetics of alkanes is always reduced by the adsorbed water. On the contrary, the diffusion kinetics of olefins is improved or remains unchanged, depending of the sorbat concentration.  相似文献   

20.
The molten globule state has been proposed as a major intermediate of protein folding. However it has proven difficult to obtain thermodynamic data characterizing this state. To explore an alternative approach for characterization of the molten globule state, n-alkyl sulfates induced formation of the molten globule state of horse cytochrome c at pH 2 was studied by isothermal titration calorimetry (ITC). Titration of the acid unfolded state of cytochrome c with sodium octyl sulfate, sodium dodecyl sulfate or sodium tetradecyl sulfate, generated an exothermic reaction for formation of the molten globule state. The effects of various n-alkyl sulfates on the acid unfolded state of cytochrome c demonstrated that the increased alkyl chain length enhanced the exothermic values of calorimetric enthalpy and induced a more compact molten globule states. The heat contents agreed well with the conformational transition measured by molar ellipticity at 222 nm ([θ]222) and Stoke radius (Rs) values. These results emphasize that isothermal titration calorimetry provides a reasonable alternative method for characterization of the molten globule state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号