首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To design methodologies that will allow researchers to directly correlate the results of adaptive control experiments with physiochemical control pathways in arbitrary complex molecular systems it is imperative that prototype systems are developed and that exigent control pathways are understood. We have been interested in the results of adaptive control experiments in our laboratory involving the maximization of a ratio of two experimental observables: (1) the thermalized emission from the solution-phase coordination complex [Ru(dpb)3](PF6)2 and (2) the second harmonic signal (a purely intensity-dependent phenomenon) of the shaped laser fields. Using a rational pulse shaping strategy, we have made a measurement of the ratio spectrum (in essence the two-photon absorption cross section) for the molecule [Ru(dpb)3](PF6)2 in a room temperature solution of acetonitrile. This spectrum is highly varied across the accessible two-photon power spectrum of our broad-band laser pulses and demonstrates the existence of a control pathway wherein a shaped laser field can manipulate excited-state population (with respect to SHG) by conforming to the second-order spectral response of the molecule in solution. We show that our adaptive control algorithm is capable of taking advantage of these control pathways using simulated adaptive control experiments. Finally, we measure second-harmonic spectra of shaped laser fields discovered during an adaptive control experiment and show that these agree with simulation. These results suggest that our adaptive control experiment can be understood in the context of the elucidated spectral control pathway.  相似文献   

2.
This article reviews experimental efforts to control multiphoton transitions using shaped femtosecond laser pulses, and it lays out the systematic study being followed by us for elucidating the effect of phase on nonlinear optical laser-molecule interactions. Starting with a brief review of nonlinear optics and how nonlinear optical processes depend on the electric field inducing them, a number of conclusions can be drawn directly from analytical solutions of the equations. From a Taylor expansion of the phase in the frequency domain, we learn that nonlinear optical processes are affected only by the second- and higher-order terms. This simple result has significant implications on how pulse-shaping experiments are to be designed. If the phase is allowed to vary arbitrarily as a continuous function, then an infinite redundancy that arises from the addition of a linear phase function across the spectrum with arbitrary offset and slope could prevent us from carrying out a closed-loop optimization experiment. The early results illustrate how the outcome of a nonlinear optical transition depends on the cooperative action of all frequencies in the bandwidth of a laser pulse. Maximum constructive or destructive interference can be achieved by programming the phase using only two phase values, 0 and pi. This assertion has been confirmed experimentally, where binary phase shaping (BPS) was shown to outperform other alternative functions, sometimes by at least on order of magnitude, in controlling multiphoton processes. Here we discuss the solution of a number of nonlinear problems that range from narrowing the second harmonic spectrum of a laser pulse to optimizing the competition between two- and three-photon transitions. This Review explores some present and future applications of pulse shaping and coherent control.  相似文献   

3.
A statistical method is reported to determine the pairs of fragment ions in a mass spectrum that are most susceptible to control by adaptive optimization of the laser pulse shapes in the strong-field regime. The proposed method is based on covariance analysis of the mass spectral fragmentation patterns generated by a set of randomly shaped pulses. The pairs of fragment ions that have higher negative covariances possess a correspondingly higher degree of controllability in an adaptive control experiment, whereas the pairs that have higher positive covariances possess correspondingly lower controllability.  相似文献   

4.
This article presents a new perspective on laser control based on insights into the effect of spectral phase on nonlinear optical processes. Gaining this understanding requires the systematic evaluation of the molecular response as a function of a series of pre-defined accurately shaped laser pulses. The effort required is rewarded with robust, highly reproducible, results. This approach is illustrated by results on selective two-photon excitation microscopy of biological samples, where higher signal and less photobleaching damage are achieved by accurate phase measurement and elimination of high-order phase distortions from the ultrashort laser pulses. A similar systematic approach applied to laser control of gas phase chemical reactions reveals surprising general trends. Molecular fragmentation pattern is found to be dependent on phase shaping. Differently shaped pulses with similar pulse duration have been found to produce similar fragmentation patterns. This implies that any single parameter that is proportional to the pulse duration, such as second harmonic generation intensity, allows us to predict the molecular fragmentation pattern within the experimental noise. This finding, is illustrated here for a series of isomers. Bond selectivity, coherent photochemistry and their applications are discussed in light of results from these systematic studies.  相似文献   

5.
We investigate the control of state-selective population transfer in the THz spectral range generated by sub-one-cycle pulse excitation. To this end we developed a zero-net-force modification of the optimal control algorithm which allows us to extend the algorithm into the ultrashort pulse domain. By combining the analysis of the control landscapes and that of optimal control theory, we were able to formulate a general mechanism suitable for laser control by ultrashort pulses. The strategy consists of a superposition of two pi-pulses with carrier envelope phases of phi = pi/2. The first pulse is effectively in resonance with the targeted transition, while the second one, fired at around the minimum of the first pulse second lobe, removes leaking to the dipole-coupled background state. To compensate for the pulses ultrashort duration, the carrier frequencies of both pulses are red-shifted from the spectroscopic resonance.  相似文献   

6.
A procedure to control harmonic generation is proposed using initial state control. We show that an initial molecular state can be prepared before shining a strong laser pulse to maximize the output harmonic generation. We demonstrate the method by maximizing emission for the sixth harmonic on a given initial IR pulse in a model H2+ system using five initial vibrational states.  相似文献   

7.
In this paper, we theoretically show that the field-free molecular orientation created by a single dual-color laser pulse can be significantly enhanced by separating it into two time-delayed dual-color subpulses. It is indicated that the maximum enhancement of the molecular orientation created by two time-delayed dual-color subpulses can be achieved with their intensity ratio of about 1:2 and by simultaneously applying the second one at the beginning of the rotational wave packet rephasing or the end of the rotational wave packet dephasing induced by the first one. It is also shown that the enhancement or suppression of the molecular orientation can be coherently manipulated by varying the relative phase between the fundamental field and its second harmonic field of the second dual-color subpulse, and its enhancement is obtained around half rotational period.  相似文献   

8.
Optimal control theory is used to design a laser pulse for the multiphoton dissociation of the Fe-CO bond in the CO-heme compounds. The study uses a hexacoordinated iron-porphyrin-imidazole-CO complex in its ground electronic state as a model for CO liganded to the heme group. The potential energy and dipole moment surfaces for the interaction of the CO ligand with the heme group are calculated using density functional theory. Optimal control theory, combined with a time-dependent quantum dynamical treatment of the laser-molecule interaction, is then used to design a laser pulse capable of efficiently dissociating the CO-heme complex model. The genetic algorithm method is used within the mathematical framework of optimal control theory to perform the optimization process. This method provides good control over the parameters of the laser pulse, allowing optimized pulses with simple time and frequency structures to be designed. The dependence of photodissociation yield on the choice of initial vibrational state and of initial laser field parameters is also investigated. The current work uses a reduced dimensionality model in which only the Fe-C and C-O stretching coordinates are explicitly taken into account in the time-dependent quantum dynamical calculations. The limitations arising from this are discussed in Sec. IV.  相似文献   

9.
A promising method to improve the attosecond pulse intensity has been theoretically presented by properly adding an ultraviolet pulse into the orthogonal two-color field. The results show that by properly adding a 125 nm ultraviolet pulse to the orthogonal two-color field, not only the harmonic yield is enhanced by 2 orders of magnitude compared with the original orthogonal two-color field case, but also the single short quantum path, which is selected to contribute to the harmonic spectrum, results in an ultrabroad 152 eV bandwidth. Moreover, by optimizing the laser parameters, we find that the harmonic enhancement is not very sensitive to the pulse duration and the polarized angle of the assisted ultraviolet pulse, which is much better for experimental realization. As a result, an isolated pulse with duration of 38 as can be obtained, which is 2 orders of magnitude improvement in comparison with the original two-color orthogonal field case.  相似文献   

10.
We review the progress in controlling quantum dynamical processes in the condensed phase with femtosecond laser pulses. Due to its high particle density the condensed phase has both high relevance and appeal for chemical synthesis. Thus, in recent years different methods have been developed to manipulate the dynamics of condensed-phase systems by changing one or multiple laser pulse parameters. Single-parameter control is often achieved by variation of the excitation pulse's wavelength, its linear chirp or its temporal subpulse separation in case of pulse sequences. Multiparameter control schemes are more flexible and provide a much larger parameter space for an optimal solution. This is realized in adaptive femtosecond quantum control, in which the optimal solution is iteratively obtained through the combination of an experimental feedback signal and an automated learning algorithm. Several experiments are presented that illustrate the different control concepts and highlight their broad applicability. These fascinating achievements show the continuous progress on the way towards the control of complex quantum reactions in the condensed phase.  相似文献   

11.
An asymmetric β-sheet structure of spider silk is said to induce optical second harmonic generation. In this paper, using an in-house nonscanning type femtosecond pulse laser second harmonic generation microscope, we characterized the behavior of the β-sheet of spider silk under an applied external force. The orientation of the β-sheets was more unidirectional when the silk was extended. One of the origins of the high mechanical strength of the dragline is suggested to be the physical arrangement of its β-sheets.  相似文献   

12.
When compared to many other sensitive methods for material detection, such as inductively coupled mass spectroscopy and thermal ionization mass spectroscopy, laser-induced breakdown spectroscopy (LIBS) typically exhibits a lower signal-to-noise ratio (SNR), resulting in higher detection limits. Increasing the SNR of LIBS would improve the ability to characterize the sample composition with increased accuracy and speed and reduce the amount of material needed to perform analysis. We have been investigating the effect of simple ultrashort laser pulse shaping on the SNR of LIBS. Our goal is to control the dynamics of the ionization and recombination processes in the laser-produced plasma to favorably affect the SNR associated with the line emission from the plasma. Pulse shaping is performed using an acousto-optic programmable dispersive filter. An adaptive learning algorithm is being developed to automate the pulse shape optimization process for maximization of LIBS SNR in nuclear security-relevant material characterization scenarios. We report a 27 % increase of the SNR for non-gated LIBS measurements of uranium by utilizing simple pulse shaping limited exclusively to excess quadratic spectral phase of the laser pulse.  相似文献   

13.
Grignard reactants like methylmagnesium chloride are not selective with respect to different carbonyl bonds. We present a theoretical study where shaped laser pulses are utilized to prefer specific bonds in a mixture of more than one carbonyl reactant. A mixture of cyclohexanone and cyclopentanone has been chosen as a representative example. The light pulse is supposed to provide the activation energy and to adopt the function of a protecting group. The control aim is to stretch exclusively the C-O bond of one compound to the length required in the Grignard transition state. To guarantee an experimentally realizable bandwidth for the unshaped pulse, we use our recently developed optimal control theory algorithm, which allows the simultaneous optimization of the light field in the time and frequency domain. Highly selective picosecond control pulses could be optimized in the infrared regime suggesting that laser assisted chemoselectivity is possible to a large extent. To obtain control not only on the final product but also on the excitation mechanism, various initial conditions and frequency restrictions were investigated.  相似文献   

14.
High-order harmonic emission and attosecond extreme-ultraviolet pulse generation have been theoretically investigated by controlling the two-color polarized laser field. The results show that when the polarized angle between the two pulses is arranged at \(\uptheta =0.2\uppi \) , not only the harmonic cutoff is extended, but also the modulation on the harmonic spectrum is decreased. Further, by optimizing the laser parameters, a supercontinuum with the 270 eV bandwidth can be obtained, which results in a series of isolated 38 as pulses. Finally, by investigating the pulse duration effect on the harmonic emission, we find that this two-color polarized gating scheme can also be achieved by the multi-cycle pulse region, which is much better for experimental realization.  相似文献   

15.
The importance of the ro-vibrational state energies on the ability to produce high fidelity binary shaped laser pulses for quantum logic gates is investigated. The single frequency 2-qubit ACNOT(1) and double frequency 2-qubit NOT(2) quantum gates are used as test cases to examine this behaviour. A range of diatomics is sampled. The laser pulses are optimized using a genetic algorithm for binary (two amplitude and two phase parameter) variation on a discretized frequency spectrum. The resulting trends in the fidelities were attributed to the intrinsic molecular properties and not the choice of method: a discretized frequency spectrum with genetic algorithm optimization. This is verified by using other common laser pulse optimization methods (including iterative optimal control theory), which result in the same qualitative trends in fidelity. The results differ from other studies that used vibrational state energies only. Moreover, appropriate choice of diatomic (relative ro-vibrational state arrangement) is critical for producing high fidelity optimized quantum logic gates. It is also suggested that global phase alignment imposes a significant restriction on obtaining high fidelity regions within the parameter search space. Overall, this indicates a complexity in the ability to provide appropriate binary laser pulse control of diatomics for molecular quantum computing.  相似文献   

16.
A simulation study demonstrates how coherent control, combined with adaptive polarization pulse shaping and a genetic algorithm, may be used to simplify femtosecond coherent nonlinear optical signals of excitons. Cross peaks are amplified and resolved, and diagonal peaks are suppressed in the heterodyne-detected two-pulse echo signal from the Soret band of a porphyrin dimer coupled to a Brownian oscillator bath. Various optimization strategies involving the spectral, temporal, and polarization profiles of the second pulse are compared.  相似文献   

17.
The build-up of triplet-triplet absorption following singlet excitation was measured for 1- and 2-nitronaphthalene and benzophenone on a picosecond time scale in the condensed phase. A single, picosecond pulse from a mode-locked Nd3+/glass laser was used to produce excitation at the laser third harmonic, 3545 Å, while the second harmonic at 5300 Å was used to probe the known triplet-triplet absorption in the nitronaphthalenes and benzophenone. Solvent effects on the build-up rates in these molecules are exposed. In the case of benzophenone, we discuss solvent assisted vibrational relaxation and intersystem crossing contributions to these rates. The anomaly of intersystem crossing at a rate of ca. 1011 s-1 with a triplet yield of less than 1 for the nitronaphthalenes is discussed.  相似文献   

18.
Study of the photoionization of aqueous tryptophan by the 265 nm harmonic of the Nd-glass laser at different laser pulse durations and energies established that this reaction is due to one-photon as well as two-photon absorption, the latter occurring mainly via the excited singlet slate Addition of the 353, or, alternatively, the 530 nm harmonic increased the photoelectron yield appreciably Double-pulse experiments (lower harmonic delayed with respect to the 265 nm pulse) were used to determine the relative importance of the excited singlet and triplet states in the two-photon processes responsible for this increase.  相似文献   

19.
Symmetry breaking and control of bond selective dissociation can be achieved by means of ultrashort few-cycle-infrared (IR) and ultraviolet (UV) laser pulses. The mechanism is demonstrated for the oriented model system, FHF-, by nuclear wave packets which are propagated on two-dimensional potential energy surfaces calculated at the QCISD/d-aug-cc-pVTZ level of theory. The IR laser pulse is optimized to drive the wave packet coherently along alternate bonds. Next, a well-timed ultrashort UV laser pulse excites the wave packet, via photodetachment of the negative bihalide anion, to the bond selective domain of the neutral surface close to the transition state. The excited wave packet is then biased to evolve along the pre-excited bond toward the target product channel, rather than bifurcating in equal amounts. Comparison of the vibrational frequencies obtained within our model with harmonic and experimental frequencies indicates substantial anharmonicities and mode couplings which impose restrictions on the mechanism in the domain of ultrashort laser fields. Extended applications of the method to randomly oriented or to asymmetric systems XHY- are also discussed, implying the control of product directionality and competing bond-breaking.  相似文献   

20.
A numerical model, describing laser–solid interaction (i.e., metal target heating, melting and vaporization), vapor plume expansion, plasma formation and laser–plasma interaction, is applied to describe the effects of double pulse (DP) laser ablation and laser induced breakdown spectroscopy (LIBS). Because the model is limited to plume expansion times in the order of (a few) 100 ns in order to produce realistic results, the interpulse delay times are varied between 10 and 100 ns, and the results are compared to the behavior of a single pulse (SP) with the same total energy. It is found that the surface temperature at the maximum is a bit lower in the DP configuration, because of the lower irradiance of one laser pulse, but it remains high during a longer time, because it rises again upon the second laser pulse. Consequently, the target remains for a longer time in the molten state, which suggests that laser ablation in the DP configuration might be more efficient, through the mechanism of splashing of the molten target. The total laser absorption in the plasma is also calculated to be clearly lower in the DP configuration, so that more laser energy can reach the target and give rise to laser ablation. Finally, it is observed that the plume expansion dynamics is characterized by two separate waves, the first one originating from the first laser pulse, and the second (higher) one as a result of the second laser pulse. Initially, the plasma temperature and electron density are somewhat lower than in the SP case, due to the lower energy of one laser pulse. However, they rise again upon the second laser pulse, and after 200 ns, they are therefore somewhat higher than in the SP case. This is especially true for the longer interpulse delay times, and it is expected that these trends will be continued for longer delay times in the μs-range, which are most typically used in DP LIBS, resulting in more intense emission intensities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号