首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Any weak, steady vortical flow is a solution, to leading order, of the inviscid fluid equations with a free surface, so long as this flow has horizontal streamlines coinciding with the undisturbed free surface. This work considers the propagation of long irrotational surface gravity waves when such a vortical flow is present. In particular, when the vortical flow and the irrotational surface waves are both periodic and have comparable length scales, resonant interactions can occur between the various components of the flow. The interaction is described by two coupled Korteweg-de Vries equations and a two-dimensional streamfunction equation.  相似文献   

2.
Any weak, steady vortical flow is a solution to leading order of the inviscid fluid equations with a free surface, so long as this flow has horizontal streamlines coinciding with the undisturbed free surface. This work considers the propagation of irrotational surface gravity waves when such a vortical flow is present. In particular, when the vortical flow and the irrotational surface waves are both periodic, resonant interactions can occur between the various components of the flow. The periodic vortical component of the flow is proposed as a model for more complicated vortical flows that would affect surface waves in the ocean, such as the turbulence in the wake of a ship. These resonant interactions are studied in two dimensions, both in the limit of deep water (Part I) and shallow water (Part II). For deep water, the resonant set of surface waves is governed by “triad-like” ordinary differential equations for the wave amplitudes, whose coefficients depend on the underlying rotational flow. These coefficients are calculated explicitly and the stability of various configurations of waves is discussed. The effect of three dimensionality is also briefly mentioned.  相似文献   

3.
The equations of the (2+1)-dimensional boundary-layer perturbation split into eigenmodes: a vortex wave and two acoustic waves. We assume that the equations of state (Taylor series approximation) are arbitrary. We realize a mode definition via local-relation equations extracted from the linearization of the general system over the boundary-layer flow. Each such link determines an invariant subspace and the corresponding projector. We examine the nonlinear equation for a vortex wave using a special orthogonal coordinate system based on streamlines. The equations for the orthogonal curves are linked to the Laplace equations via Laplace and Moutard transformations. The nonlinearity determines the proper form of the interaction between vortical and acoustic boundary-layer perturbation fields fixed by projecting to a subspace of the Orr-Sommerfeld equation solutions for the Tollmienn-Schlichting (linear vortical) wave and by the corresponding procedure for the acoustic wave. We suggest a new mechanism for controlling the nonlinear resonance of the Tollmienn-Schlichting wave by sound via a four-wave interaction.__________Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 144, No. 1, pp. 171–181, July, 2005.  相似文献   

4.
Nonlinear barotropic vortical patterns on a γ ‐plane are investigated analytically. The solutions describe large‐scale Rossby waves rotating anticyclonically with zero circulation. The Rossby waves are predicted to rotate with a specific angular velocity. The stream function–vorticity relation is assumed to be nonlinear, which may lead to a pronounced asymmetry within the pattern. The similarity between the simulated patterns and the Antarctic Circumpolar Wave is highlighted.  相似文献   

5.
Problems on buckling modes (BMs) are considered for a spherical sandwich shell with thin isotropic external layers and a transversely soft core of arbitrary thickness in a centrosymmetric temperature field inhomogeneous across the shell thickness. For their statement, the two-dimensional equations of the theory of moderate bending of thin Kirchhoff–Love shells are used for the external layers, with regard for their interaction with the core; for the core, maximum simplified geometrically nonlinear equations of thermoelasticity theory, in which a minimum number of nonlinear summands is retained to correctly describe its pure shear BM, are utilized. An exact analytical solution to the problem on initial centrosymmetric deformation of the shell is found, assuming that the temperature increments in the external layers are constant across their thickness. It is shown that the three-dimensional equations for the core, linearized in the neighborhood of the solution, can be integrated along the radial coordinate and reduced to two two-dimensional differential equations, which supplement the six equations that describe the neutral equilibrium of the external layers. It is established that the system of eight differential equations of stability, upon introduction of new unknowns in the form of scalar and vortical potentials, splits into two uncoupled sets of equations. The first of them has two kinds of solutions, by which the pure shear BM is described at an identical value of the parameter of critical temperature. The second system describes a mixed flexural BM, whose realization, at definite combinations of determining parameters of the shell and over wide ranges of their variation, is possible for critical parameters of temperature by orders of magnitude exceeding the similar parameter of shear BM.  相似文献   

6.
The Green–Naghdi equations describing three-dimensional water waves are considered. Assuming that transverse variations of the flow occur at a much shorter lengthscale than variations along the wave propagation direction, we derive simplified asymptotic equations from the Green–Naghdi model. For steady flows, we show that the approximate model reduces to a one-dimensional Hamiltonian system along each stream line. Exact solutions describing a wide class of free-boundary flows depending on several arbitrary functions of one argument are found. The numerical results showing different patterns of steady three-dimensional waves are presented.  相似文献   

7.
It is shown that Lie group analysis of differential equations provides the exact solutions of two-dimensional stratified rotating Boussinesq equations which are a basic model in geophysical fluid dynamics. The exact solutions are obtained as group invariant solutions corresponding to the translation and dilation generators of the group of transformations admitted by the equations. The comparison with the previous analytic studies and experimental observations confirms that the anisotropic nature of the wave motion allows to associate these invariant solutions with uni-directional internal wave beams propagating through the medium. It is also shown that the direction of internal wave beam propagation is in the transverse direction to one of the invariants which corresponds to a linear combination of the translation symmetries. Furthermore, the amplitudes of a linear superposition of wave-like invariant solutions forming the internal gravity wave beams are arbitrary functions of that invariant. Analytic examples of the latitude-dependent invariant solutions associated with internal gravity wave beams that have different general profiles along the obtained invariant and propagating in the transverse direction are considered. The behavior of the invariant solutions near the critical latitude is illustrated.  相似文献   

8.
Simplified asymptotic equations describing the resonant nonlinear interaction of equatorial Rossby waves with barotropic Rossby waves with significant midlatitude projection in the presence of arbitrary vertically and meridionally sheared zonal mean winds are developed. The three mode equations presented here are an extension of the two mode equations derived by Majda and Biello [ 1 ] and arise in the physically relevant regime produced by seasonal heating when the vertical (baroclinic) mean shear has both symmetric and antisymmetric components; the dynamics of the equatorial baroclinic and both symmetric and antisymmetric barotropic waves is developed. The equations described here are novel in several respects and involve a linear dispersive wave system coupled through quadratic nonlinearities. Numerical simulations are used to explore the effect of antisymmetric baroclinic shear on the exchange of energy between equatorial baroclinic and barotropic waves; the main effect of moderate antisymmetric winds is to shift the barotropic waves meridionally. A purely meridionally antisymmetric mean shear yields highly asymmetric waves which often propagate across the equator. The two mode equations appropriate to Ref. [ 1 ] are shown to have analytic solitary wave solutions and some representative examples with their velocity fields are presented.  相似文献   

9.
Exact traveling-wave solutions of time-dependent nonlinear inhomogeneous PDEs, describing several model systems in geophysical fluid dynamics, are found. The reduced nonlinear ODEs are treated as systems of linear algebraic equations in the derivatives. A variety of solutions are found, depending on the rank of the algebraic systems. The geophysical systems include acoustic gravity waves, inertial waves, and Rossby waves. The solutions describe waves which are, in general, either periodic or monoclinic. The present approach is compared with the earlier one due to Grundland (1974) for finding exact solutions of inhomogeneous systems of nonlinear PDEs.  相似文献   

10.
The nonsimilarity solutions of laminar boundary layer free convection flows along a rotating isothermal plate under nonuniform gravity and along a non isothermal vertical plate have been obtained. The governing nonlinear partial differential equations are reduced to a set of ordinary differential equations and then solved numerically using the method of ‘shooting’ with least square convergence criterion. The results for large values of axial distance are found to be more accurate than those obtained by series and integral methods, but for small values of axial distance they are in good agreement.  相似文献   

11.
A mathematical formulation is presented for solving the three-dimensional nonlinear hydrodynamic equations, using the Galerkin method with an arbitrary set of basis functions.An explicit time splitting method is used to integrate these equations through time. The time splitting method is formulated in such a way that the advective terms, which are computationally expensive to evaluate, are integrated with a longer time step than the linear terms. The length of the time step used to integrate the linear terms is determined by the propagation speed of the gravity waves. The paper demonstrates that using this time splitting method an accurate and computationally economic solution of the full three-dimensional equations is possible.Numerical results are presented for the nonlinear seiche motion in a one-dimensional basin, and for the three-dimensional wind induced flow in a closed rectangular basin, using basis sets of cosine functions, Chebyshev polynomials and Gram-Schmidt orthogonalized polynomials.  相似文献   

12.
A system of nonlinear partial differential equations is considered that models perturbations in a layer of an ideal electrically conducting rotating fluid bounded by spatially and temporally varying surfaces with allowance for inertial forces. The system is reduced to a scalar equation. The solvability of initial boundary value problems arising in the theory of waves in conducting rotating fluids can be established by analyzing this equation. Solutions to the scalar equation are constructed that describe small-amplitude wave propagation in an infinite horizontal layer and a long narrow channel.  相似文献   

13.
The equations describing the three-dimensional equatorial dynamics of an ideal electrically conducting inhomogeneous rotating fluid are studied. The magnetic and velocity fields are represented as superpositions of unperturbed steady-state fields and those induced by wave motion. As a result, after introducing two auxiliary functions, the equations are reduced to a special scalar one. Based on the study of this equation, the solvability of initial-boundary value problems arising in the theory of waves propagating in a spherical layer of an electrically conducting density-inhomogeneous rotating fluid in an equatorial zone is analyzed. Particular solutions of the scalar equation are constructed that describe small-amplitude wave propagation.  相似文献   

14.
The system of equations of gravity surface waves is considered in the case where the basin’s bottom is given by a rapidly oscillating function against a background of slow variations of the bottom. Under the assumption that the lengths of the waves under study are greater than the characteristic length of the basin bottom’s oscillations but can be much less than the characteristic dimensions of the domain where these waves propagate, the adiabatic approximation is used to pass to a reduced homogenized equation of wave equation type or to the linearized Boussinesq equation with dispersion that is “anomalous” in the theory of surface waves (equations of wave equation type with added fourth derivatives). The rapidly varying solutions of the reduced equation can be found (and they were also found in the authors’ works) by asymptotic methods, for example, by the WKB method, and in the case of focal points, by the Maslov canonical operator and its generalizations.  相似文献   

15.
A uniformly valid asymptotic theory of resonantly interacting high-frequency waves for nonlinear hyperbolic systems in several space dimensions is developed. When applied to the equations of two-dimensional compressible fluid flow, this theory both predicts the geometric location of the new sound waves produced from the resonant interaction of sound waves and vorticity waves as well as yielding a simplified system which governs the evolution of the amplitudes. In this important special case, this system is two Burgers equations coupled by a linear integral operator with known kernel given by the vortex strength of the shear wave. Several inherently multidimensional assumptions for the phases are needed in this theory, and theoretical examples are given which delineate these assumptions. Furthermore, explicit necessary and sufficient conditions for the validity of the earlier noninteracting wave theory of Hunter and Keller are derived; these explicit conditions indicate that generally waves resonate and interact in several dimensions.  相似文献   

16.
复合材料加筋薄壁圆锥壳体有限变形的混合型理论   总被引:1,自引:1,他引:0  
本文利用变分原理和平均筋条刚度法,建立了在任意载荷作用下纵向和环向密加筋复合材料圆锥壳体有限变形的Donnell型理论.考虑了面板最一般的弯曲拉伸耦合关系和加筋筋条的偏心效应的影响.导出了平衡条件、边界条件和变形协调方程.给出了以应力函数和挠度函数表示的耦合形式的非性性变系数偏微分方程组.对于一些特殊情况,给出了相应的简化方程.  相似文献   

17.
Rotary gravity waves in a partially filled vertical cylindrical container excited by a rotating disc at the top of the cylinder are investigated. Analytical results for the growth rate of the waves are reported. Moreover, the development of the wave is shown in an experiment. (© 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
王兆玲  肖衡 《应用数学和力学》2015,36(11):1135-1144
海洋表面波的3-波至5-波约化Hamilton方程由于其对称多项式简化结构以及保能量等独特优点,得到广泛应用.但是,据相关近似假设,其适用范围局限于波陡很小的弱非线性波.于是进一步探讨下述推广问题: 对一定范围内的有限幅非线性波,在足够精确意义上是否也能获得具对称多项式简化结构的约化Hamilton方程?由于涉及复杂非线性强耦合,在该重要方面至今尚未取得进展.提出基于Chebyshev(切比雪夫)多项式逼近处理精确水波方程强非线性耦合的新简化途径,导出具对称多项式简化结构的新约化Hamilton方程.新结果将波数与波陡之积为小量的弱非线性情形拓广到该积直至1.035的非线性情形.分析表明,在该范围内新结果的误差不超过5%,特别,当前述积邻近于0.9时新结果给出精确结果.  相似文献   

19.
In this paper, mathematical modeling of the propagation of Love waves in a fluid-saturated porous layer under a rigid boundary and lying over an elastic half-space under gravity has been considered. The equations of motion have been formulated separately for different media under suitable boundary conditions at the interface of porous layer, elastic half-space under gravity and rigid layer. Following Biot, the frequency equation has been derived which contain Whittaker’s function and its derivative that have been expanded asymptotically up to second term (for approximate result) for large argument due to small values of Biot’s gravity parameter (varying from 0 to 1). The effect of porosity and gravity of the layers in the propagation of Love waves has been studied. The effect of hydrostatic initial stress generated due to gravity in the half-space has also been shown in the phase velocity of Love waves. The phase velocity of Love waves for first two modes has been presented graphically. Frequency equations have also been derived for some particular cases, which are in perfect agreement with standard results. Subsequently the lower and upper bounds of Love wave speed have also been discussed.  相似文献   

20.
We consider the diffraction of electromagnetic waves on bodies of revolution located in stratified media with arbitrary excitation. The problem is reduced to boundary-value problems on the azimuthal halfplane for systems of elliptical differential equations. A system of one-dimensional integral equations of the first kind is obtained.Translated from Vychislitel'naya Matematika i Matematicheskoe Obespechenie EVM, pp. 182–186, 1985.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号