首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The initial boundary value problem for a class of scalar nonautonomous conservation laws in 1 space dimension is proved to be well posed and stable with respect to variations in the flux. Targeting applications to traffic, the regularity assumptions on the flow are extended to a merely dependence on time. These results ensure, for instance, the well‐posedness of a class of vehicular traffic models with time‐dependent speed limits. A traffic management problem is then shown to admit an optimal solution.  相似文献   

2.
In this paper, we investigate the asymptotic behavior of solutions for anisotropic conservation laws in two-dimensional space, provided with step-like initial conditions that approach the constant states u± (u<u+) as x→±, respectively. It shows that there is a global classical solution that converges toward the rarefaction wave, ie, the unique entropy solution of the Riemann problem for the nonviscous Burgers' equation in one-dimensional space.  相似文献   

3.
We prove regularity estimates for entropy solutions to scalar conservation laws with a force. Based on the kinetic form of a scalar conservation law, a new decomposition of entropy solutions is introduced, by means of a decomposition in the velocity variable, adapted to the non-degeneracy properties of the flux function. This allows a finer control of the degeneracy behavior of the flux. In addition, this decomposition allows to make use of the fact that the entropy dissipation measure has locally finite singular moments. Based on these observations, improved regularity estimates for entropy solutions to (forced) scalar conservation laws are obtained.  相似文献   

4.

We study a class of weak solutions to hyperbolic systems of conservation (balance) laws in one space dimension, called stratified solutions. These solutions are bounded and ``regular' in the direction of a linearly degenerate characteristic field of the system, but not in other directions. In particular, they are not required to have finite total variation. We prove some results of local existence and uniqueness.

  相似文献   


5.
In this paper, we study the stability of a single transonic shock wave solution to the hyperbolic conservation laws with a resonant moving source. Compared with the previous results [W.-C. Lien, Hyperbolic conservation laws with a moving source, Comm. Pure Appl. Math. 52 (9) (1999) 1075-1098; T.P. Liu, Nonlinear stability and instability of transonic flows through a nozzle, Comm. Math. Phys. 83 (2) (1982) 243-260] on this stability problem, in this paper, the transonic ith shock is assumed to be relatively strong and stable in the sense of Majda. Then the framework of [M. Lewicka, L1 stability of patterns of non-interacting large shock waves, Indiana Univ. Math. J. 49 (4) (2000) 1515-1537; M. Lewicka, Stability conditions for patterns of noninteracting large shock waves, SIAM J. Math. Anal. 32 (5) (2001) 1094-1116 (electronic)] can be applied. A new criterion is obtained to test whether such a shock is time asymptotically stable or not. And by constructing the Liu-Yang functional, one can prove the L1 stability of the shock under the stability condition. This is an extension of the result [S.-Y. Ha, T. Yang, L1 stability for systems of hyperbolic conservation laws with a resonant moving source, SIAM J. Math. Anal. 34 (5) (2003) 1226-1251 (electronic); W.-C. Lien, Hyperbolic conservation laws with a moving source, Comm. Pure Appl. Math. 52 (9) (1999) 1075-1098] to a more general case.  相似文献   

6.
We consider approximate solutions to nonlinear hyperbolic conservation laws. If the exact solution is unavailable, the truncation error may be the only quantitative measure for the quality of the approximation. We propose a new way of estimating the local truncation error, through the use of localized test-functions. In the convex scalar case, they can be converted intoL loc estimates, following theLip convergence theory developed by Tadmor et al. Comparisons between the local truncation error and theL loc -error show remarkably similar behavior. Numerical results are presented for the convex scalar case, where the theory is valid, as well as for nonconvex scalar examples and the Euler equations of gas dynamics. The local truncation error has proved a reliable smoothness indicator and has been implemented in adaptive algorithms in [Karni, Kurganov and Petrova, J. Comput. Phys. 178 (2002) 323–341].  相似文献   

7.
In this paper, we investigate the large-time behavior of solutions to the initial-boundary value problem for n × n hyperbolic system of conservation laws with artificial viscosity in the half line (0, ∞). We first show that a boundary layer exists if the corresponding hyperbolic part contains at least one characteristic field with negative propagation speed. We further show that such boundary layer is nonlinearly stable under small initial perturbation. The proofs are given by an elementary energy method.  相似文献   

8.
We consider a simple model case of stiff source terms in hyperbolic conservation laws, namely, the case of scalar conservation laws with a zeroth order source with low regularity. It is well known that a direct treatment of the source term by finite volume schemes gives unsatisfactory results for both the reduced CFL condition and refined meshes required because of the lack of accuracy on equilibrium states. The source term should be taken into account in the upwinding and discretized at the nodes of the grid. In order to solve numerically the problem, we introduce a so-called equilibrium schemes with the properties that (i) the maximum principle holds true; (ii) discrete entropy inequalities are satisfied; (iii) steady state solutions of the problem are maintained. One of the difficulties in studying the convergence is that there are no estimates for this problem. We therefore introduce a kinetic interpretation of upwinding taking into account the source terms. Based on the kinetic formulation we give a new convergence proof that only uses property (ii) in order to ensure desired compactness framework for a family of approximate solutions and that relies on minimal assumptions. The computational efficiency of our equilibrium schemes is demonstrated by numerical tests that show that, in comparison with an usual upwind scheme, the corresponding equilibrium version is far more accurate. Furthermore, numerical computations show that equilibrium schemes enable us to treat efficiently the sources with singularities and oscillating coefficients.

  相似文献   


9.
In this paper we give a simple proof of well-posedness of multidimensional scalar conservations laws with a strong boundary condition. The proof is based on a result of strong trace for solutions of scalar conservation laws and kinetic formulation.  相似文献   

10.
It is proved that for scalar conservation laws, if the flux function is strictly convex, and if the entropy solution is piecewise smooth with finitely many discontinuities (which includes initial central rarefaction waves, initial shocks, possible spontaneous formation of shocks in a future time and interactions of all these patterns), then the error of viscosity solution to the inviscid solution is bounded by in the -norm, which is an improvement of the upper bound. If neither central rarefaction waves nor spontaneous shocks occur, the error bound is improved to .

  相似文献   


11.
Based on kinetic formulation for scalar conservation laws, we present implicit kinetic schemes. For time stepping these schemes require resolution of linear systems of algebraic equations. The scheme is conservative at steady states. We prove that if time marching procedure converges to some steady state solution, then the implicit kinetic scheme converges to some entropy steady state solution. We give sufficient condition of the convergence of time marching procedure. For scalar conservation laws with a stiff source term we construct a stiff numerical scheme with discontinuous artificial viscosity coefficients that ensure the scheme to be equilibrium conserving. We couple the developed implicit approach with the stiff space discretization, thus providing improved stability and equilibrium conservation property in the resulting scheme. Numerical results demonstrate high computational capabilities (stability for large CFL numbers, fast convergence, accuracy) of the developed implicit approach. © 2002 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 18: 26–43, 2002  相似文献   

12.
A class of finite volume methods based on standard high resolution schemes, but which allows spatially varying time steps, is described and analyzed. A maximum principle and the TVD property are verified for general advective flux, extending the previous theoretical work on local time stepping methods. Moreover, an entropy condition is verified which, with sufficient limiting, guarantees convergence to the entropy solution for convex flux.

  相似文献   


13.
A kind of regularity for the mild solution of perturbed conservation laws is proposed. This regularity is described in term of variations measured in the L1-norm. A dissipativity condition from the semigroup approach is used to show that the mild solution stays within a class of bounded variation in this sense of regularity. This shows that this class of functions is an invariant of the semigroup. The same analysis carries over to the periodic problem. The class of boundedL1-variation functions used here can be normed to give a Banach space structure. It also has an analogue with the space of Lipschitz functions  相似文献   

14.
We investigate the quasi-potential problem for the entropy cost functionals of non-entropic solutions to scalar conservation laws with smooth fluxes. We prove that the quasi-potentials coincide with the integral of a suitable Einstein entropy.  相似文献   

15.

We present a periodic version of the Glimm scheme applicable to special classes of systems for which a simplication first noticed by Nishida (1968) and further extended by Bakhvalov (1970) and DiPerna (1973) is available. For these special classes of systems of conservation laws the simplification of the Glimm scheme gives global existence of solutions of the Cauchy problem with large initial data in , for Bakhvalov's class, and in , in the case of DiPerna's class. It may also happen that the system is in Bakhvalov's class only at a neighboorhood of a constant state, as it was proved for the isentropic gas dynamics by DiPerna (1973), in which case the initial data is taken in with , for some constant which is for the isentropic gas dynamics systems. For periodic initial data, our periodic formulation establishes that the periodic solutions so constructed, , are uniformly bounded in , for all 0$">, where is the period. We then obtain the asymptotic decay of these solutions by applying a theorem of Chen and Frid in (1999) combined with a compactness theorem of DiPerna in (1983). The question about the decay of Nishida's solution was proposed by Glimm and Lax in (1970) and has remained open since then. The classes considered include the -systems with , , , which, for , model isentropic gas dynamics in Lagrangian coordinates.

  相似文献   


16.
We present a class of systems consisting of two conservation laws in one spatial dimension that share an intriguing property: they admit structurally stable Riemann solutions without the standard constant state. This striking phenomenon emerges in sharp contrast to what is known for strictly hyperbolic systems of conservation laws, in which the existence of constant states is necessary for the structural stability of Riemann solutions. We prove that, together, coincidence of characteristic speeds and a certain amount of genuine nonlinearity are sufficient to trigger the aforementioned phenomenon. The proof revolves about the presence of a singular point in the coincidence set that organizes the construction of our Riemann solutions.  相似文献   

17.
In this paper, we intend to study the symmetry properties and conservation laws of a time fractional fifth-order Sawada-Kotera (S-K) equation with Riemann-Liouville derivative. Applying the well-known Lie symmetry method, we analysis the symmetry properties of the equation. Based on this, we find that the S-K equation can be reduced to a fractional ordinary differential equation with Erdelyi-Kober derivative by the similarity variable and transformation. Furthermore, we construct some conservation laws for the S-K equation using the idea in the Ibragimov theorem on conservation laws and the fractional generalization of the Noether operators.  相似文献   

18.
19.
In this paper, the fourth-order time fractional Burgers equation has been investigated, which can be used to describe gas dynamics and traffic flow. By employing the Lie group analysis method, the invariance properties of the equation are provided. With the aid of the sub-equation method, a new type of explicit solutions are well constructed with a detailed derivation. Furthermore, based on the power series theory, we investigate its approximate analytical solutions. Finally, its conservation laws with two kinds of independent variables are performed by making use of the nonlinear self-adjointness method.  相似文献   

20.
In this paper we survey recent results on the decay of periodic and almost periodic solutions of conservation laws. We also recall some recent results on the global existence of periodic solutions of conservation laws systems which lie inBV loc and are constructed through Glimm scheme. The latter motivates a discussion on a possible strategy for solving the open problem of the global existence of periodic solutions of the Euler equations for nonisentropic gas dynamics. We base our decay analysis on a general result about space-time functions which are almost periodic in the space variable, established here for the first time. This result is an abstract version of Theorem 2.1 in [31], which in turn is an extention of the combined result given by Theorems 3.1–3.2 in [9].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号