首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Specific flux data were obtained during the transient period of flux decline in laminar crossflow filtration. Effects of hydrodynamics on cake parameters such as specific resistance, mass and particle size distribution were studied experimentally. An evaluation of crossflow filtration models suggests that a model based on shear-induced diffusion [1] is a better predictor of specific flux decline than a particle adhesion model [2]. Even for relatively narrowly distributed suspensions, polydispersivity complicates analyses in a manner that is not adequately addressed by these models. Changes in experimental specific cake resistances with module hydrodynamics coupled to the inadequacy of these models for accurately predicting time-dependent specific flux profiles, cake specific resistances, and mass suggests that cake morphology is a key variable that needs to be incorporated in future modeling efforts.  相似文献   

2.
A Monte Carlo method is developed for crossflow membrane filtration to determine the critical flux of hard sphere suspensions. Brownian and shear-induced diffusion are incorporated into an effective hydrodynamic force exerted on the hard spheres in a concentrated shear flow. Effects of shear rate and particle size on the critical flux are investigated using hydrodynamic force bias Monte Carlo simulations, providing a baseline of the critical flux.  相似文献   

3.
Mass transfer during crossflow ultrafiltration is mathematically expressed using the two-dimensional convective–diffusion equation. Numerical simulations showed that mass transfer in crossflow filtration quickly reaches a steady-state for constant boundary conditions. Hence, the unsteady nature of the permeate flux decline must be caused by changes in the hydraulic boundary condition at the membrane surface due to cake formation during filtration. A step-wise pseudo steady-state model was developed to predict the flux decline due to concentration polarization during crossflow ultrafiltration. An iterative algorithm was employed to predict the amount of flux decline for each finite time interval until the true steady-state permeate flux is established. For model verification, crossflow filtration of monodisperse polystyrene latex suspensions ranging from 0.064 to 2.16 μm in diameter was studied under constant transmembrane pressure mode. Besides the crossflow filtration tests, dead-end filtration tests were also carried out to independently determine a model parameter, the specific cake resistance. Another model parameter, the effective diffusion coefficient, is defined as the sum of molecular and shear-induced hydrodynamic diffusion coefficients. The step-wise pseudo steady-state model predictions are in good agreement with experimental results of flux decline during crossflow ultrafiltration of colloidal suspensions. Experimental variations in particle size, feed concentration, and crossflow velocity were also effectively modeled.  相似文献   

4.
The role of colloid deposition on the performance of a salt-rejecting NF membrane was evaluated by modeling salt transport using a two-layer transport model, which quantified the relative contributions of advection and diffusion in the cake and the membrane layers, and the effects of flux on the membrane sieving coefficient. The model was able to accurately describe how the measured permeate concentration, rejection, osmotic pressure, and flux decline varied with time. The two-layer model confirmed that the Peclet number in the cake layer was about an order of magnitude higher than that in the membrane layer, leading to significant concentration polarization at the membrane surface, as shown by others. However, the cake layer also increased overall resistance, which resulted in flux decline during constant pressure operation. Flux decline caused an increase in the actual sieving coefficient, leading to higher solute flux, lower observed rejection, and thus lower the bulk concentration. These coupled phenomena tended to mitigate the increase in concentration polarization caused by the cake. Therefore, as predicted by the model and verified by experiment, the osmotic pressure does not increase monotonically as the cake grows, and in fact can decrease when the cake layer is thick and the flux decline is significant. In our experimental system, the pressure drop across the cake layer, which was proportional to the cake thickness, was significant under the conditions studied. The effects of cake-enhanced osmotic pressure analyzed here are lower than those observed in previous studies, possibly because the transport model employed explicitly accounts for the effect of flux decline due to cake growth on the membrane sieving coefficient, and possibly because we used a somewhat different methodology to estimate cake porosity.  相似文献   

5.
In order to investigate effects of the colloidal interaction in the membrane filtrations, the dead-end ultrafiltration of latex colloids was conducted with fully retentive membranes. Experimental results concerning the permeate flux during the filtration indicate that the void fraction of cake layer increased with the decrease of the ionic strength, due to the expanded Debye double layer thickness around the particles. The concentration dependence of the gradient diffusion coefficient of colloidal particles has been examined as a function of solution ionic strength. The NVT Monte Carlo simulation was applied on the bulk suspension so as to determine the thermodynamic coefficient, and the hydrodynamic coefficient was evaluated from the previously developed relation for an ordered system. The long-range electrostatic interactions between the particles are determined by using a singularity method, which provides accurate solutions to the linearized electrostatic field. The predictions on the variation of concentration polarization layer have been presented, from which we found that both the permeate flux and the particle diffusion are related to determine the concentration distribution above the cake layer.  相似文献   

6.
Although the principal mechanisms of crossflow microfiltration (MF) are well-known, the practical applicability of the resulting microfiltration models is still limited. This can be largely attributed to the lack of understanding of effects of polydispersity in the particulate suspensions, as relevant to concentration polarisation in MF. This paper describes an investigation of concentration polarisation behaviour of bidisperse suspensions, in the regime where shear-induced diffusion is the dominant back-transport mechanism. In the transient flux regime, the particle deposition onto the membrane was monitored by means of confocal scanning laser microscopy. As in accordance with the linear dependence of the shear-induced diffusivity on a2, only the small particles in the bidisperse suspensions were found to deposit onto the membrane. The back-transport flux that was calculated from the deposition rate and the actual permeate flux, was found to be independent of the composition of the suspension, whereas it was equal to the back-transport flux of a monodisperse suspension of the small particles only, with a similar total particle fraction. These results can be explained with the occurrence of particle size segregation in the feed flow, which leads to an enrichment with small particles of the suspension near the membrane. The findings are also shown to be relevant to particle fractionation processes by MF. In such fractionation processes, particle size segregation is found to have a strong effect on the separation characteristics such as particle size and fat content of the permeate. A polydisperse suspension could be fractionated using a membrane having a pore size larger than the largest particles present. The fractionation thus results not from size exclusion in the membrane, but from segregation effects in the feed channel.  相似文献   

7.
It was investigated how the value of zeta potential of microfiltration membranes influenced the critical flux while filtering a suspension of silica particles. Ceramic membranes of three different materials were used and measurements were performed at two different values of pH for each material corresponding to two different values of zeta potential for each material.It was found that neither the zeta potential of the membrane nor the zeta potential of the particles influenced the observed critical flux. The critical flux increased linearly with the wall shear stress and decreased with increasing particle concentration.Expressions were obtained for the critical flux based on two different particle transport mechanisms: particle rolling (torque-balance model) and shear-induced diffusion. It was found that neither of the expressions could explain experimental critical fluxes adequately.  相似文献   

8.
Dead-end filtration of colloids using hollow fibers has been analysed theoretically and experimentally. A mathematical model for constant flux filtration using dead-end hollow fiber membranes has been developed by combining the Hagen–Poiseuille equation, the (standard) filtration equation, and cake filtration theory of Petsev et al. [D.N. Petsev, V.M. Starov, I.B. Ivanov, Concentrated dispersions of charged colloidal particles: sedimentation, ultrafiltration and diffusion, Colloid Surf. A: Physicochem. Eng. Aspects, 81 (1993) 65–81.] to describe the time dependence of the filtration behavior of hollow fiber membranes experiencing particle deposition on their surface. Instead of using traditional constitutive equations, the resistance of the cake layer formed by the deposited colloids has been directly correlated to the cake structure. This structure is determined by application of a force balance on a particle in the cake layer combined with the assumption that an electrostatically stable cake layer of mono-sized particles would be ordered in a regular packing geometry of minimum energy. The developed model has been used to identify the relationship between the filtration behavior of the hollow fiber membrane and the particle properties, fiber size, and imposed average flux. Filtration experiments using polystyrene latex particles of relatively narrow size distribution with a single dead-end hollow fiber membrane demonstrate good consistency between experimental results and model prediction. The developed model has been used to simulate the distribution of the cake resistance, transmembrane pressure, and flux along the hollow fiber membrane and used to assess the effect of fiber size, particle size, zeta potential, and the average imposed flux on the suction pressure-time profiles, flux, and cake resistance distributions. These results provide new insights into the filtration behavior of the hollow fiber membrane under constant flux conditions.  相似文献   

9.
Rapid backpulsing to reduce membrane fouling during crossflow microfiltration and ultrafiltration is studied by solving the convection-diffusion equation for concentration polarization and depolarization during cyclic operation with transmembrane pressure reversal. For a fixed duration of reverse filtration, there is a critical duration of forward filtration which must not be exceeded if the formation of a cake or gel layer on the membrane surface is to be avoided. The theory also predicts an optimum duration of forward filtration which maximizes the net flux, since backpulsing at too high of frequency does not allow for adequate permeate collection during forward filtration relative to that lost during reverse filtration, whereas backpulsing at too low of frequency results in significant flux decline due to cake or gel buildup during each period of forward filtration. In general, short backpulse durations, low feed concentrations, high shear rates, and high forward transmembrane pressures give the highest net fluxes, whereas the magnitude of the reverse transmembrane pressure has a relatively small effect.Rapid backpulsing experiments with yeast suspended in deionized water performed with a flat-sheet crossflow microfiltration module and cellulose acetate membranes with 0.07 μm average pore diameter. The optimum forward filtration times were found to be 1.5, 3, and 5 s, respectively, for backpulse durations of 0.1, 0.2, and 0.3 s. Both theory and experiment gave net fluxes with backpulsing of about 85% of the clean membrane flux (0.022 cm/s = 790 l/m2 h), whereas the long-term flux in the absence of backpulsing is an order-of-magnitude lower (0.0026 cm/s = 94 l/m2 h).  相似文献   

10.
A close coupling between the structure and size of hematite flocs formed in suspension and the permeability of the cake that accumulates on ultrafiltration membranes is observed. Specific resistances of cakes formed from flocs generated under diffusion-limited aggregation conditions are at least an order of magnitude lower than those of cakes formed from flocs generated under reaction-limited aggregation conditions. Similar effects are observed whether the aggregation regime is controlled by salt concentration, pH, or added organic anions. This dramatic difference in cake resistance is considered to arise from the size and fractal properties of the hematite assemblages. The ease of fluid flow through these assemblages will be influenced both by the fractal dimension of the aggregates and by their size relative to primary particle size (since, for fractal aggregates, porosity increases as the size of the aggregate increases). The size and strength of aggregates are also important determinants of the relative effects of permeation drag, shear-induced diffusion, and inertial lift and result, in the studies reported here, in relatively similar rates of particle deposition for both rapidly and slowly formed aggregates. The results presented here suggest that control of cake permeability (and mass) via control of aggregate size and structure is an area with scope for further development though the nature and extent of compaction effects in modifying the fractal properties of aggregates generated in suspension requires attention. Copyright 1999 Academic Press.  相似文献   

11.
A theoretical model for prediction of permeate flux during crossflow membrane filtration of rigid hard spherical solute particles is developed. The model utilizes the equivalence of the hydrodynamic and thermodynamic principles governing the equilibrium in a concentration polarization layer. A combination of the two approaches yields an analytical expression for the permeate flux. The model predicts the local variation of permeate flux in a filtration channel, as well as provides a simple expression for the channel-averaged flux. A criterion for the formation of a filter cake is presented and is used to predict the downstream position in the filtration channel where cake layer build-up initiates. The predictions of permeate flux using the model compare remarkably well with a detailed numerical solution of the convective diffusion equation coupled with the osmotic pressure model. Based on the model, a novel graphical technique for prediction of the local permeate flux in a crossflow filtration channel has also been presented.  相似文献   

12.
Design parameters for rotating cylindrical filtration   总被引:2,自引:0,他引:2  
Rotating cylindrical filtration displays significantly reduced plugging of filter pores and build-up of a cake layer, but the number and range of parameters that can be adjusted complicates the design of these devices. Twelve individual parameters were investigated experimentally by measuring the build-up of particles on the rotating cylindrical filter after a fixed time of operation. The build-up of particles on the filter depends on the rotational speed, the radial filtrate flow, the particle size and the gap width. Other parameters, such as suspension concentration and total flow rate are less important. Of the four mechanisms present in rotating filters to reduce pore plugging and cake build-up, axial shear, rotational shear, centrifugal sedimentation and vortical motion, the evidence suggests rotational shear is the dominant mechanism, although the other mechanisms still play minor roles. The ratio of the shear force acting parallel to the filter surface on a particle to the Stokes drag acting normal to the filter surface on the particle due to the difference between particle motion and filtrate flow can be used as a non-dimensional parameter that predicts the degree of particle build-up on the filter surface for a wide variety of filtration conditions.  相似文献   

13.
Using a diffusion model of particle dynamics in the channel, we study entropic effects in channel-facilitated transport. We derive general expressions for the fluxes of non-interacting particles and particles that strongly repel each other through the channel of varying cross section area, assuming that the transport is driven by the difference in particle concentrations on the two sides of the membrane. For a special case of a right truncated cone expanding in the left-to-right direction, we show how the fluxes depend on the geometric parameters of the channel and on the particle concentrations. For non-interacting particles the flux is direction-independent in the sense that inversion of the concentration difference leads to the inversion of the direction of the flux without changing its magnitude. This symmetry is broken for repelling particles: The flux in the left-to-right direction exceeds its right-to-left counterpart. Our theoretical predictions are supported by three-dimensional Brownian dynamics simulations.  相似文献   

14.
Here we describe the nature and implications of the "concentration polarization" (CP) layer that is formed during ultrafiltration of colloidal particles using a new approach in which the solid pressure, which arises from inter-particle interactions, and the inherent osmotic pressure are separately considered. The approach makes use of the particle transport mass balance between the convective and diffusive fluxes. The particle convection rate is hindered when inter-particle interactions take effect by reducing the particle velocities while the particle diffusion is solely controlled by the Brownian motion. An increase in solid pressure accounts for the reduction of the water potential caused by the relative motions of the particles and the surrounding water. A cell model is adopted to relate the local solid pressure with the local solid fraction and inter-particle interactions. The inter-particle interactions critically determine the form of particle accumulation (i.e. CP or gel/cake) on the membrane. The Shirato-Darcy equation is employed to relate the rate of increase in solid pressure, the relative liquid velocity and the solid fraction. Numerical integration approaches are employed to quantify the properties of the CP layer during both the development as well as the steady state phases (with steady state normally being achieved in a few minutes). The solid fractions are always no higher than those obtained when the inter-particle interactions are not considered. The decrease of the water potential caused by CP formation leads to the increase of both the solid pressure and the osmotic pressure. The dependence of the solid pressure on the solid fraction is usually stronger than that of the osmotic pressure. It is thus apparent that the solid pressure would be expected to dominate water potential reduction for solid fractions above a certain value though the solid pressure will be negligible when the solid fraction is relatively low.  相似文献   

15.
The role of surfactant type in the aggregation and gelation of strawberry-like particles induced by intense shear without any electrolyte addition is investigated. The particles are composed of a rubbery core, partially covered by a plastic shell, and well stabilized by fixed (sulfate) charges in the end group of the polymer chains originating from the initiator. In the absence of any surfactant, after the system passes through a microchannel at a Peclet number equal to 220 and a particle volume fraction equal to 0.15, not only shear-induced gelation but also partial coalescence among the particles occurs. The same shear-induced aggregation/gelation process has been carried out in the presence of an ionic (sulfonate) surfactant or a nonionic (Tween 20) steric surfactant. It is found that for both surfactants shear-induced gelation does occur at low surfactant surface density but the conversion of the primary particles to the clusters constituting the gel decreases as the surfactant surface density increases. When the surfactant surface density increases above certain critical values, shear-induced gelation and eventually even aggregation do not occur any longer. For the sulfonate surfactant, this was explained in the literature by the non-DLVO, short-range repulsive hydration forces generated by the adsorbed surfactant layer. In this work, it is shown that the steric repulsion generated by the adsorbed Tween 20 layer can also protect particles from aggregation under intense shear. Moreover, the nonionic steric surfactant can also protect the strawberry-like particles from coalescence. This implies a decrease in the fractal dimension of the clusters constituting the gel from 2.76 to 2.45, which cannot be achieved using the ionic sulfonate surfactant.  相似文献   

16.
We review the dynamics of particle laden interfaces, both particle monolayers and particle + surfactant monolayers. We also discuss the use of the Brownian motion of microparticles trapped at fluid interfaces for measuring the shear rheology of surfactant and polymer monolayers. We describe the basic concepts of interfacial rheology and the different experimental methods for measuring both dilational and shear surface complex moduli over a broad range of frequencies, with emphasis in the micro-rheology methods. In the case of particles trapped at interfaces the calculation of the diffusion coefficient from the Brownian trajectories of the particles is calculated as a function of particle surface concentration. We describe in detail the calculation in the case of subdiffusive particle dynamics. A comprehensive review of dilational and shear rheology of particle monolayers and particle + surfactant monolayers is presented. Finally the advantages and current open problems of the use of the Brownian motion of microparticles for calculating the shear complex modulus of monolayers are described in detail.  相似文献   

17.
The main problem in treating oil/water emulsion from car wash waste-water by ultrafiltration (UF) is fouling caused by oil adsorption on the membrane surface and internal pore walls. This study demonstrates that the addition of bentonite clay can reduce the adsorption layer on cellulose acetate UF membrane, resulting in a reduction of total membrane resistance (Rt). Experiments were conducted to identify and describe three possible mechanisms: (i) bulk oil emulsion concentration reduction; (ii) particle aggregation and (iii) detachment of the adsorbed gel layer by shear force. Adsorption of oil emulsion by bentonite can lead to a significant reduction of bulk oil emulsion concentration, one of the major causes of flux enhancement. Results show that contact of oil emulsion with bentonite forms larger particles resulting in flux increment. An optimum particle size of 37 μm, corresponds with a bentonite concentration of 300 mg/l and provided the highest flux. Beyond this limiting concentration, flux improvement gradually declined, possibly due to the formation of packed cake of particles on the membrane surface. The presence of bentonite in the oil emulsion promotes high shear stress which acts against the gel layer. This high shear stress, caused by bentonite particles and cross-flow velocity, reverses the adsorbed gel layer to the bulk of the liquid phase.  相似文献   

18.
We perform molecular dynamics simulations on a bead-spring model of pure polymer grafted nanoparticles (PGNs) and of a blend of PGNs with a polymer melt to investigate the correlation between PGN design parameters (such as particle core concentration, polymer grafting density, and polymer length) and properties, such as microstructure, particle mobility, and viscous response. Constant strain-rate simulations were carried out to calculate viscosities and a constant-stress ensemble was used to calculate yield stresses. The PGN systems are found to have less structural order, lower viscosity, and faster diffusivity with increasing length of the grafted chains for a given core concentration or grafting density. Decreasing grafting density causes depletion effects associated with the chains leading to close contacts between some particle cores. All systems were found to shear thin, with the pure PGN systems shear thinning more than the blend; also, the pure systems exhibited a clear yielding behavior that was absent in the blend. Regarding the mechanism of shear thinning at the high shear rates examined, it was found that the shear-induced decrease of Brownian stresses and increase in chain alignment, both correlate with the reduction of viscosity in the system with the latter being more dominant. A coupling between Brownian stresses and chain alignment was also observed wherein the non-equilibrium particle distribution itself promotes chain alignment in the direction of shear.  相似文献   

19.
We have investigated the influences of the magnetic field strength, shear rate, and random forces on transport coefficients such as viscosity and diffusion coefficient, and also on the orientational distributions of rodlike particles of a dilute colloidal dispersion. This dispersion is composed of ferromagnetic spheroidal particles with a magnetic moment normal to the particle axis. In the present analysis, these spheroidal particles are assumed to conduct the rotational Brownian motion in a simple shear flow as well as an external magnetic field. The basic equation of the orientational distribution function has been derived from the balance of the torques and solved numerically. The results obtained here are summarized as follows. For a very strong magnetic field, the rodlike particle is significantly restricted in the field direction, so that the particle points to a direction normal to the flow direction (and also to the magnetic field direction). However, the present particle does not exhibit a strong directional characteristic, which is one of the typical properties for the previous particle with a magnetic moment parallel to the particle axis. That is, the particle can rotate around the axis of the magnetic moment, although the magnetic moment nearly points to the field direction. The viscosity significantly increases with the field strength, as in the previous particle model. The particle of a larger aspect ratio leads to the larger increase in the viscosity, since such elongated particles induce larger resistance in a flow field. The diffusion coefficient under circumstances of an applied magnetic field is in reasonable agreement between theoretical and experimental results.  相似文献   

20.
We investigate the shear-induced structure formation of colloidal particles dissolved in non-Newtonian fluids by means of computer simulations. The two investigated visco-elastic fluids are a semi-dilute polymer solution and a worm-like micellar solution. Both shear-thinning fluids contain long flexible chains whose entanglements appear and disappear continually as a result of Brownian motion and the applied shear flow. To reach sufficiently large time and length scales in three-dimensional simulations with up to 96 spherical colloids, we employ the responsive particle dynamics simulation method of modeling each chain as a single soft Brownian particle with slowly evolving inter-particle degrees of freedom accounting for the entanglements. Parameters in the model are chosen such that the simulated rheological properties of the fluids, i.e., the storage and loss moduli and the shear viscosities, are in reasonable agreement with experimental values. Spherical colloids dispersed in both quiescent fluids mix homogeneously. Under shear flow, however, the colloids in the micellar solution align to form strings in the flow direction, whereas the colloids in the polymer solution remain randomly distributed. These observations agree with recent experimental studies of colloids in the bulk of these two liquids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号