首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
We study the collisions of moving breathers with the same frequency, traveling with opposite directions within a Klein-Gordon chain of oscillators. Two types of collisions have been analyzed: symmetric and non-symmetric, head-on collisions. For low enough frequency the outcome is strongly dependent of the dynamical states of the two colliding breathers just before the collision. For symmetric collisions, several results can be observed: breather generation, with the formation of a trapped breather and two new moving breathers; breather reflection; generation of two new moving breathers; and breather fusion bringing about a trapped breather. For non-symmetric collisions some possible results are: breather generation, with the formation of three new moving breathers; breather fusion, originating a new moving breather; breather trapping with breather reflection; generation of two new moving breathers; and two new moving breathers traveling as a bound state. Breather annihilation has never been observed.  相似文献   

2.
Symmetric collisions of two discrete breathers in the lattice with saturable nonlinearity are investigated. The strong correlation of the collision properties and the parameters of colliding breathers (power, velocity, and phase difference), lattice parameters and position of the collision point is found. This is related to the internal structure of the colliding breathers and energy exchange with the phonon background. The type of collision changes from elastic to the inelastic (the breathers merging, multi-bounce interactions, breather creation etc.) with the increasing of the colliding breather power. Collision of high power breathers always results in the breather fusion. The elastic and inelastic collisions are related to the periodic and quasi-periodic colliding breathers, respectively.  相似文献   

3.
We study the dynamics of moving discrete breathers in an interfaced piecewise DNA molecule. This is a DNA chain in which all the base pairs are identical and there exists an interface such that the base pairs dipole moments at each side are oriented in opposite directions. The Hamiltonian of the Peyrard-Bishop model is augmented with a term that includes the dipole-dipole coupling between base pairs. Numerical simulations show the existence of two dynamical regimes. If the translational kinetic energy of a moving breather launched towards the interface is below a critical value, it is trapped in a region around the interface collecting vibrational energy. For an energy larger than the critical value, the breather is transmitted and continues travelling along the double strand with lower velocity. Reflection phenomena never occur. The same study has been carried out when a single dipole is oriented in opposite direction to the other ones. When moving breathers collide with the single inverted dipole, the same effects appear. These results emphasize the importance of this simple type of local inhomogeneity as it creates a mechanism for the trapping of energy. Finally, the simulations show that, under favorable conditions, several launched moving breathers can be trapped successively at the interface region producing an accumulation of vibrational energy. Moreover, an additional colliding moving breather can produce a saturation of energy and a moving breather with all the accumulated energy is transmitted to the chain.  相似文献   

4.
We study the dynamics of the discrete nonlinear Schr?dinger lattice initialized such that a very long transitory period of time in which standard Boltzmann statistics is insufficient is reached. Our study of the nonlinear system locked in this non-Gibbsian state focuses on the dynamics of discrete breathers (also called intrinsic localized modes). It is found that part of the energy spontaneously condenses into several discrete breathers. Although these discrete breathers are extremely long lived, their total number is found to decrease as the evolution progresses. Even though the total number of discrete breathers decreases we report the surprising observation that the energy content in the discrete breather population increases. We interpret these observations in the perspective of discrete breather creation and annihilation and find that the death of a discrete breather cause effective energy transfer to a spatially nearby discrete breather. It is found that the concepts of a multi-frequency discrete breather and of internal modes is crucial for this process. Finally, we find that the existence of a discrete breather tends to soften the lattice in its immediate neighborhood, resulting in high amplitude thermal fluctuation close to an existing discrete breather. This in turn nucleates discrete breather creation close to a already existing discrete breather. Received 21 January 1999 and Received in final form 20 September 1999  相似文献   

5.
We study the existence and stability of two-dimensional discrete breathers in a two-dimensionai discrete diatomic Klein-Gordon lattice consisting of alternating light and heavy atoms, with nearest-neighbor harmonic coupling. Localized solutions to the corresponding nonlinear differential equations with frequencies inside the gap of the linear wave spectrum, i.e. two-dimensional gap breathers, are investigated numerically. The numerical results of the corresponding algebraic equations demonstrate the possibility of the existence of two-dimensional gap breathers with three types of symmetries, i.e., symmetric, twin-antisymmetric and single-antisymmetric. Their stability depends on the nonlinear on-site potential (soft or hard), the interaction potential (attractive or repulsive) and the center of the two-dimensional gap breathers (on a light or a heavy atom).  相似文献   

6.
We study a two-dimensional lattice of anharmonic oscillators with only quartic nearest-neighbor interactions, in which discrete breathers can be explicitly constructed by an exact separation of their time and space dependence. DBs can stably exist in the two-dimensional Klein-Gordon lattice with hard on-site potential. When a parametric driving term is introduced in the factor multiplying the harmonic part of the on-site potential of the system, we can obtain the stable quasiperiodic discrete breathers and chaotic discrete breathers by changing the amplitude of the driver.  相似文献   

7.
We investigate the influence of energetic disorder, viscous damping and an external field on the electron transfer (ET) in DNA. The double helix structure of the λ-form of DNA is modeled by a steric oscillator network. In the context of the base-pair picture two different kinds of modes representing twist motions of the base pairs and H-bond distortions are coupled to the electron amplitude. Through the nonlinear interaction between the electronic and the vibrational degrees of freedom localized stationary states in the form of standing electron-vibron breathers are produced which we derive with a stationary map method. We show that in the presence of additional energetic disorder the degree of localization of such breathers is enhanced. It is demonstrated how an applied electric field initiates the long-range coherent motion of breathers along the bases of a DNA strand. These moving electron-vibron breathers, absorbing energy from the applied field, sustain energetic losses due to the viscous friction caused by the aqueous solvent as well as the impact of a moderate amount of energetic disorder. Moreover, it is illustrated that with the choice of the amplitude and frequency of the external field, the breather can be steered to a desired lattice position achieving control of the ET. Received 5 July 2002 Published online 29 November 2002  相似文献   

8.
XU Quan  TIAN Qiang 《中国物理快报》2008,25(10):3586-3589
We study the existence of two-dimensional discrete breathers in a two-dimensional face-centred square lattice consisting of alternating light and heavy atoms, with nearest-neighbour coupling containing quartic soft or hardnonlinearity. This study is focused on two-dimensional breathers with frequency in the gap that separates the acoustic and optical bands of the phonon spectrum. We demonstrate the possibility of existence of two-dimensional gap breathers by using the numerical method, the local anharmonicity approximation and the rotating wave approximation. We obtain six types of two-dimensional gap breathers, i.e., symmetric, mirror-symmetric and asymmetric, no matter whether the centre of the breather is on a light or a heavy atom.  相似文献   

9.
Modulational instability of travelling plane waves is often considered as the first step in the formation of intrinsically localized modes (discrete breathers) in anharmonic lattices. Here, we consider an alternative mechanism for breather formation, originating in oscillatory instabilities of spatially periodic or quasiperiodic nonlinear standing waves (SWs). These SWs are constructed for Klein-Gordon or Discrete Nonlinear Schr?dinger lattices as exact time periodic and time reversible multibreather solutions from the limit of uncoupled oscillators, and merge into harmonic SWs in the small-amplitude limit. Approaching the linear limit, all SWs with nontrivial wave vectors (0 < Q < π) become unstable through oscillatory instabilities, persisting for arbitrarily small amplitudes in infinite lattices. The dynamics resulting from these instabilities is found to be qualitatively different for wave vectors smaller than or larger than π/2, respectively. In one regime persisting breathers are found, while in the other regime the system thermalizes. Received 6 October 2001 / Received in final form 1st March 2002 Published online 2 October 2002 RID="a" ID="a"e-mail: mjn@ifm.liu.se  相似文献   

10.
Under investigation in this paper are the inhomogeneous nonlinear Schrödinger Maxwell–Bloch (INLS-MB) equations which model the propagation of optical waves in an inhomogeneous nonlinear light guide doped with two-level resonant atoms. Higher-order nonautonomous breather as well as rogue wave solutions in terms of the determinants for the INLS-MB equations are presented via the nn-fold variable-coefficient modified Darboux transformation. The interactions among two nonautonomous breathers are graphically discussed, including the fundamental breather, bound breather, two-breather compression and two-breather evolution, etc. Moreover, several patterns of the higher-order rogue waves are also exhibited, such as the square rogue wave, two- and three-order periodic rogue waves, periodic fission and fusion, two-order stationary rogue waves, and recurrence of the two-order rogue waves. The character of the trajectory of the two-order periodic rogue wave is analyzed. Additionally, a novel type of interaction, namely, the collision between the breather and long-lived rogue waves, is found to be elastic. Our results could be useful for controlling the nonautonomous optical breathers and rogue waves in the inhomogeneous erbium doped fiber.  相似文献   

11.
The dynamics of different kinds of discrete breathers in three types of one-dimensional monatomic chains with on-site and inter-site potentials are investigated. The existence and evolution of symmetric breather, antisymmetric breather, and multibreather in one-dimensional models are proved by using rotating wave approximation, local anharmonic approximation, and the numerical method. The linear stability of these breathers is investigated by using Lyapunov stable analysis. The localization and stability of breathers in three types of models correlate closely to the system nonlinear parameter β.  相似文献   

12.
Moving nonlinear localized vibrational modes (i.e. discrete breathers) for the one-dimensional homogenous lattice with quartic anharmonicity are obtained analytically by means of a semidiscrete approximation plus an integration. In addition to the pulse-envelope type of moving modes which have been found previously both analytically and numerically, we find that a kink-envelope type of moving mode which has not been reported before can also exist for such a lattice system. The two types of modes in both right- and left-moving form can occur with different carrier wavevectors and frequencies in separate parts of the plane. Numerical simulations are performed and their results are in good agreement with the analytical predictions. Received 13 October 1999 and Received in final form 15 May 2000  相似文献   

13.
We study the existence of travelling breathers in Klein-Gordon chains, which consist of one-dimensional networks of nonlinear oscillators in an anharmonic on-site potential, linearly coupled to their nearest neighbors. Travelling breathers are spatially localized solutions which appear time periodic in a referential in translation at constant velocity. Approximate solutions of this type have been constructed in the form of modulated plane waves, whose envelopes satisfy the nonlinear Schrödinger equation (M. Remoissenet, Phys. Rev. B 33, n.4, 2386 (1986), J. Giannoulis and A. Mielke, Nonlinearity 17, p. 551–565 (2004)). In the case of travelling waves (where the phase velocity of the plane wave equals the group velocity of the wave packet), the existence of nearby exact solutions has been proved by Iooss and Kirchgässner, who have obtained exact solitary wave solutions superposed on an exponentially small oscillatory tail (G. Iooss, K. Kirchgässner, Commun. Math. Phys. 211, 439–464 (2000)). However, a rigorous existence result has been lacking in the more general case when phase and group velocities are different. This situation is examined in the present paper, in a case when the breather period and the inverse of its velocity are commensurate. We show that the center manifold reduction method introduced by Iooss and Kirchgässner is still applicable when the problem is formulated in an appropriate way. This allows us to reduce the problem locally to a finite dimensional reversible system of ordinary differential equations, whose principal part admits homoclinic solutions to quasi-periodic orbits under general conditions on the potential. For an even potential, using the additional symmetry of the system, we obtain homoclinic orbits to small periodic ones for the full reduced system. For the oscillator chain, these orbits correspond to exact small amplitude travelling breather solutions superposed on an exponentially small oscillatory tail. Their principal part (excluding the tail) coincides at leading order with the nonlinear Schrödinger approximation.  相似文献   

14.
吕彬彬  田强 《中国物理 B》2009,18(10):4393-4406
In this paper we study the existence and stability of two-dimensional discrete gap breathers in a two-dimensional diatomic face-centered square lattice consisting of alternating light and heavy atoms, with on-site potential and coupling potential. This study is focused on two-dimensional breathers with their frequency in the gap that separates the acoustic and optical bands of the phonon spectrum. We demonstrate the possibility of the existence of two-dimensional gap breathers by using a numerical method. Six types of two-dimensional gap breathers are obtained, i.e., symmetric, mirror-symmetric and asymmetric, whether the center of the breather is on a light or a heavy atom. The difference between one-dimensional discrete gap breathers and two-dimensional discrete gap breathers is also discussed. We use Aubry's theory to analyze the stability of discrete gap breathers in the two-dimensional diatomic face-centered square lattice.  相似文献   

15.
We present analytical and numerical studies of phase-coherent dynamics of intrinsically localized excitations (breathers) in a system of two weakly coupled nonlinear oscillator chains. We show that there are two qualitatively different dynamical regimes of the coupled breathers, either immovable or slowly moving: the periodic wandering of the low-amplitude breather between the chains, and the one-chain-localization of the high-amplitude breather. These two modes of coupled breathers can be mapped exactly onto two solutions of a pendulum equation, detached by a separatrix mode. We also show that these two regimes of the coupled breathers are similar, and are described by a similar pair of equations, to the two regimes in the nonlinear tunneling dynamics of two weakly coupled Bose-Einstein condensates. On the basis of this analogy, we predict a new tunneling mode of two weakly coupled Bose-Einstein condensates in which their relative phase oscillates around π/2 modulo π.  相似文献   

16.
The nonlinear localized vibrational modes of a one-dimensional atomic chain with two periodically alternating masses and force constants are analytically investigated using a discrete multiple-scale expansion method. This model simulates a row of atoms in the <1 1 1>-direction of sphalerite, or zinc blende, crystals. Owing to the structural asymmetry, the vibrational amplitude is governed by a perturbed nonlinear Schr?dinger equation instead of the standard one found in one-dimensional lattices with two alternating masses but uniform force constant. Although the stationary localized modes with carrier wavevector at the Brillouin-zone boundary are similar to those of ionic lattices, the moving localized modes with wavevectors within the zone are different owing to the perturbation. The calculation shows that the height of the moving localized modes in this lattice dampens with time. Received 14 May 2001 and Received in final form 12 July 2001  相似文献   

17.
The properties of vibrational localized (breathers) and traveling (anharmonic phonons) waves are discussed in an infinite, one-dimensional, monoatomic crystal for the Fermi-Pasta-Ulam and Frenkel-Kontorova models. The shooting and finite difference schemes have been implemented to reckon the displacement fields of breathers and anharmonic phonons, respectively. These tools provide localized and traveling waves proving to be indefinitely stable in simulations carried out by solving the equations of motion. The emphasis is laid on the role of the cubic and quartic terms of the anharmonic potential which turn out to oppose and to shore up the restoring force, respectively. The case of vibrational modes arising in an anharmonic crystal subject to a soft phonon induced instability is also addressed. Received 7 November 2001 and Received in final form 5 February 2002 Published online 6 June 2002  相似文献   

18.
We study the propagation and collision of the compacton-like kinks in the system of an anharmonic lattice with a double well on-site potential by a direct algebraic method and numerical experiments. It is found that the localization of the compacton-like kinks is related to the nonlinear coupling parameter Cnl and the potential barrier height V0 of the double well potential. The velocity of the propagation of the compacton-like kinks is determined by the linear coupling parameter Cl, the nonlinear coupling parameter Cnl and the localization parameter q. Numerical experiments demonstrate that appropriate Cl is not detrimental to a stable propagation of the compacton-like kinks. However, the collision of compacton-like kinks and anti-kinks in the lattice with comparatively small Cl leads to the emergence of a discrete stationary breather and small amplitude nonlinear oscillation background, while moderate Cl results in the emergence of two deformed kinks with radiating oscillations and lower propagation velocities.  相似文献   

19.
The long time behavior of a couple of interacting asymmetric exclusion processes of opposite velocities is investigated in one space dimension. We do not allow two particles at the same site, and a collision effect (exchange) takes place when particles of opposite velocities meet at neighboring sites. There are two conserved quantities, and the model admits hyperbolic (Euler) scaling; the hydrodynamic limit results in the classical Leroux system of conservation laws, even beyond the appearance of shocks. Actually, we prove convergence to the set of entropy solutions, the question of uniqueness is left open. To control rapid oscillations of Lax entropies via logarithmic Sobolev inequality estimates, the symmetric part of the process is speeded up in a suitable way, thus a slowly vanishing viscosity is obtained at the macroscopic level. Following [4, 5], the stochastic version of Tartar–Murat theory of compensated compactness is extended to two-component stochastic models.Supported in part by the Hungarian Science Foundation (OTKA), grants T26176 and T037685.  相似文献   

20.
In terms of the modified Sturm-Liouville theorem, the Levinson theorem for the one-dimensional Klein-Gordon equation with a symmetric potential V(x) is established. It is shown that the number N+ (N-) of bound states with even (odd) parity is related to the phase shift of the scattering states with the same parity at zero momentum as and The solution of the one-dimensional Klein-Gordon equation with the energy M or -M is called as a half bound state if it is finite but does not decay fast enough at infinity to be square integrable. Received 22 December 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号