首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 604 毫秒
1.
2.
3.
A dual-level direct dynamics study has been carried out for the two hydrogen abstraction reactions CF(3)CHCl(2)+Cl and CF(3)CHFCl+Cl. The geometries and frequencies of the stationary points are optimized at the BHLYP/6-311G(d,p), B3LYP/6-311G(d,p), and MP2/6-31G(d) levels, respectively, with single-point calculations for energy at the BHLYP/6-311++G(3df,2p), G3(MP2), and QCISD(T)/6-311G(d,p) levels. The enthalpies of formation for the species CF(3)CHCl(2), CF(3)CHFCl, CF(3)CCl(2), and CF(3)CFCl are evaluated at higher levels. With the information of the potential energy surface at BHLYP/6-311++G(3df,2p)//6-311G(d,p) level, we employ canonical variational transition-state theory with small-curvature tunneling correction to calculate the rate constants. The agreement between theoretical and experimental rate constants is good in the measured temperature range 276-382 K. The effect of fluorine substitution on reactivity of the C-H bond is discussed.  相似文献   

4.
The nuclear isotropic shielding constants sigma((17)O) and sigma((13)C) of the carbonyl bond of acetone in water at supercritical (P=340.2 atm and T=673 K) and normal water conditions have been studied theoretically using Monte Carlo simulation and quantum mechanics calculations based on the B3LYP6-311++G(2d,2p) method. Statistically uncorrelated configurations have been obtained from Monte Carlo simulations with unpolarized and in-solution polarized solute. The results show that solvent effects on the shielding constants have a significant contribution of the electrostatic interactions and that quantitative estimates for solvent shifts of shielding constants can be obtained modeling the water molecules by point charges (electrostatic embedding). In supercritical water, there is a decrease in the magnitude of sigma((13)C) but a sizable increase in the magnitude of sigma((17)O) when compared with the results obtained in normal water. It is found that the influence of the solute polarization is mild in the supercritical regime but it is particularly important for sigma((17)O) in normal water and its shielding effect reflects the increase in the average number of hydrogen bonds between acetone and water. Changing the solvent environment from normal to supercritical water condition, the B3LYP6-311++G(2d,2p) calculations on the statistically uncorrelated configurations sampled from the Monte Carlo simulation give a (13)C chemical shift of 11.7+/-0.6 ppm for polarized acetone in good agreement with the experimentally inferred result of 9-11 ppm.  相似文献   

5.
The B3LYP/6-31+G(d) molecular geometry optimized structures of 17 five-membered heterocycles were employed together with the gauge including atomic orbitals (GIAO) density functional theory (DFT) method at the B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p) and B3LYP/6-311+G(2d,p) levels of theory for the calculation of proton and carbon chemicals shifts and coupling constants. The method of geometry optimization for pyrrole (1), N-methylpyrrole (2) and thiophene (7) using the larger 6-311++G(d,p) basis sets at the B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p), B3LYP/6-31+G(2d,p) and B3LYP/cc-pVTZ levels of theory gave little difference between calculated and experimental values of coupling constants. In general, the (1)H and 13C chemical shifts for all compounds are in good agreement with theoretical calculations using the smaller 6-31 basis set. The values of nJHH(n=3, 4, 5) and rmnJ(CH)(n=1, 2, 3, 4) were predicted well using the larger 6-31+G(d,p) and 6-311++G(d,p) basis sets and at the B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p), B3LYP/6-31+G(2d,2p) levels of theory. The computed atomic charges [Mülliken; Natural Bond Orbital Analysis (NBO); Merz-Kollman (MK); CHELP and CHELPG] for the B3LYP/6-311++G(d,p) geometry optimized structures of 1-17 were used to explore correlations with the experimental proton and carbon chemical shifts.  相似文献   

6.
Electronic structure calculations have been performed on a model N-phosphorylguanidine, or phosphagen, to understand the stereoelectronic factors contributing to the lability of the "high-energy" N-P bond. The lability of the N-P bond is central to the physiological role of phosphagens involving phosphoryl transfer reactions important in cellular energy buffering and metabolism. Eight protonated forms of N-methyl-N'-phosphorylguanidine have been energy minimized at levels of theory ranging up to B3LYP/6-311++G(d,p) and MP2/6-311++G(d,p) to investigate the correlation between protonation state and N-P bond length. Selected forms have also been minimized using the CCSD/6-311++G(d,p) and QCISD/6-311++G(d,p) levels of theory. Bulk solvation energies using the polarized continuum model (PCM) with B3LYP/6-311++G(d,p) test the influence of the surroundings on computed structures and energies. The N-P bond length depends on the overall protonation state where increased protonation at the phosphoryl group or deprotonation at the unsubstituted N' nitrogen results in shorter, stronger N-P bonds. Natural bond orbital analysis shows that the protonation state affects the N-P bond length by altering the magnitude of stabilizing n(O) --> sigma*(N-P) stereoelectronic interactions and to a lesser extent the sigma(N-P) --> sigma*(C-N') and sigma(N-P) --> sigma*(C-N) interactions. The computations do not provide evidence of a competition between the phosphoryl and guanidinium groups for the same lone pair on the bridging nitrogen, as previously suggested by opposing resonance theory. The computed n(O) --> sigma*(N-P) anomeric effect provides a novel explanation of "high-energy" N-P bond lability. This offers new mechanistic insight into phosphoryl transfer reactions involving both phosphagens and other biochemically important "high-energy" phosphoester bonds.  相似文献   

7.
UB3LYP/6-311++G(d,p) and ROMP2/6-311++G(d,p)//UB3LYP/6-311++G(d,p) calculations including the effect of benzene solvent through the PCM-UAHF method render a concerted mechanism without fragmentation as the most favourable one for the Dowd-Beckwith radical ring expansion of the bromomethyl adduct of methyl cyclopentanone-2-carboxylate to yield methyl cyclohexanone-3-carboxylate. The corresponding concerted TS is a bicyclic alcoxy radical.  相似文献   

8.
The molecular electrostatic potential minimum (Vmin) observed for the arene pi system of a substituted benzene derivatives is found to correlate linearly with the substituent constant sigma(p) degrees . The use of Vmin as a measure of substituent effect is further confirmed by obtaining a linear correlation between Vmin and a thermodynamic measure of the substituent effect obtained from an isodesmic reaction scheme involving benzene derivatives. Vmin and the recently proposed electrostatic potential value at the nucleus of the para carbon atom (Vc) show a nearly identical trend toward quantification of substituent effects. Both quantities have been compared at three different density functional theory methods, viz. B3LYP/6-311+G(2d,2p), BPW91/6-311G(d,p), and B3LYP/aug-cc-pvtz, as well as the at the MP2/6-31+G(d,p) level of theory, showing remarkable consistency among them.  相似文献   

9.
This work presents an experimental and theoretical study to address the chemical reactivity of series of nitroxide radicals. For that purpose two physicochemical properties: the half-wave potential and the hyperfine coupling constants of the nitrogen nuclei, were analyzed. Experimental values are compared with electronic structure calculations at the BHandHLYP/6-311++G(2d,2p) level. E1/2 values were in good agreement with the adiabatic ionization potential when including the solvent effects by the Cramer and Truhlar Solvation Model. Preeliminar experimental electron spin deslocalization studies suggest that structural hindrance plays an important role in their deslocatization mechanism.  相似文献   

10.
The rate constants of the reactions of HOI molecules with H, OH, O ((3)P), and I ((2)P(3/2)) atoms have been estimated over the temperature range 300-2500 K using four different levels of theory. Geometry optimizations and vibrational frequency calculations are performed using MP2 methods combined with two basis sets (cc-pVTZ and 6-311G(d,p)). Single-point energy calculations are performed with the highly correlated ab initio coupled cluster method in the space of single, double, and triple (pertubatively) electron excitations CCSD(T) using the cc-pVTZ, cc-pVQZ, 6-311+G(3df,2p), and 6-311++G(3df,3pd) basis sets. Reaction enthalpies at 0 K were calculated at the CCSD(T)/cc-pVnZ//MP2/cc-pVTZ (n = T and Q), CCSD(T)/6-311+G(3df,2p)//MP2/6-311G(d,p), and CCSD(T)/6-311++G(3df,3pd)//MP2/6-311G(d,p) levels of theory and compared to the experimental values taken from the literature. Canonical transition-state theory with an Eckart tunneling correction is used to predict the rate constants as a function of temperature. The computational procedure has been used to predict rate constants for H-abstraction elementary reactions because there are actually no literature data to which the calculated rate constants can be directly compared. The final objective is to implement kinetics of gaseous reactions in the ASTEC (accident source term evaluation code) program to improve speciation of fission products, which can be transported along the reactor coolant system (RCS) of a pressurized water reactor (PWR) in the case of a severe accident.  相似文献   

11.
The rate constants of the nucleophilic reactions between amines and benzhydrylium ions were calculated using first-principles theoretical methods. Solvation models including PCM, CPCM, and COSMORS, as well as different types of atomic radii including UA0, UAKS, UAHF, Bondi, and UFF, and several single-point energy calculation methods (B3LYP, B3P86, B3PW91, BHANDH, PBEPBE, BMK, M06, MP2, and ONIOM method) were exam-ined. By comparing the correlation between experimental rate constants and the calculated values, the ONIOM(CCSD(T)/6-311++G(2df,2p):B3LYP/6-311++G(2df,2p))// B3LYP/6-31G(d)/PCM/UFF) method was found to perform the best. This method was then employed to calculate the rate constants of the reactions between diverse amines and diarylcarbenium ions. The calculated rate constants for 65 reactions of amines with diarylcarbenium ions are in agreement with the experimental values, indicating that it is feasible to predict the rate constant of a reaction between an amine and a diarylcarbenium ion through ab initio calculation.  相似文献   

12.
Porphyrin derivatives are known singlet oxygen sensitizers in photodynamic therapy (PDT). Energy transfer from a class of diolefinic laser dyes (DOLDs) as energy donors to the sodium salt of meso-tetrakis (4-sulfonatophenyl) porphyrin (TPPS) as the accepter of energy would extend the range of photon harvesting down to the UV-region. Energy transfer was substantially enhanced in the presence of metallic silver nanoparticles (AgNPs), as revealed by steady-state emission spectroscopy, lifetimes, and quantum mechanics. DOLDs under investigation are 2,5-distyrylpyrazine (DSP), 1,4-bis (β-pyridyl-2 vinyl) benzene (P2VB), and 1,4 bis (2-methylstyryl) benzene (MSB) as efficient donors of intense absorption in the UV-region. AgNPs enhance the rate of energy transfer from DOLDs to TPPS via bringing donor and acceptor into close- proximity with a concomitant increase in dipole–dipole interaction between excited state donor and ground-state acceptor. The DOLDs molecular structures were optimized using the DFT/CAM-B3LYP/6-311G++ (d, p) level of theory. The calculated electronic absorption spectra for the studied DOLDs in the gaseous phase and methanol solvent were studied using the time-dependent density functional theory (TD-DFT) at M06-2X/6-311G++ (2d,2p) level. The calculated absorption/emission spectra for DSP laser dye in methanol are obtained at the TD/ M06-2X/6-311G++(2d, 2p) method. Notably, all theoretical results of the molecular structures under study highly agreed with the practical optical results. Energy transfer rate constants (kET) amid energy donor/acceptor pairs were determined by Stern-Volmer constants (KSV) and donors' lifetime measurements. The KSV values indicate an enhanced Fluorescence Resonance Energy Transfer (FRET) efficiencies in the presence of negatively charged AgNPs. The critical transfer distances Ro were determined from the spectral overlap between the emission spectrum of donor and absorption spectrum of TTPS. These outcomes propose the application of designed metal-enhanced FRET for energy-transfer-based assays and photodynamic therapy (PDT) applications.  相似文献   

13.
The proton nuclear magnetic resonance (NMR) spectra of butane‐1,4‐diol, pentane‐1,4‐diol, (S,S)‐hexane‐2,5‐diol, 2,5‐dimethylhexane‐2,5‐diol and cyclohexane‐1,4‐diols (cis and trans) in benzene and some other solvents have been analysed. The conformer distribution and the NMR shifts of these diols in benzene have been computed on the basis of the density functional theory, the solvent being included by means of the integral‐equation‐formalism polarizable continuum model implemented in Gaussian 09. Relative Gibbs energies of all conformers are calculated at the Perdew, Burke and Ernzerhof (PBE)0/6‐311+G(d,p) level and NMR shifts by the gauge‐including atomic orbital method with the PBE0/6‐311+G(d,p) geometry and the cc‐pVTZ basis set. Vicinal three‐bond coupling constants for the acyclic diols are calculated from the relative conformer populations, the geometries and generalized Karplus equations developed by Altona's group; these correlate well with the experimental values. The solvent dependence of coupling constants for butane‐1,4‐diol is attributed to conformational change. Coupling constants for the rigid cyclohexane‐1,4‐diols do not change with solvent and are readily explained in terms of their geometries. The NMR shifts of hydrogen‐bonded protons in individual conformers of alkane‐1,n‐diols show a very rough correlation with the OH···OH distances. The computed overall NMR shifts for CH protons in 1,2‐diols, 1,3‐diols and 1,4‐diols are systematically high but correlate very well with the experimental values, with a gradient of 1.07 ± 0.01; those for OH protons correlate less well. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
The GIAO (Gauge Including Atomic Orbitals) DFT (Density Functional Theory) method is applied at the B3LYP/6-31+G(d,p)//B3LYP/6-31+G(d), B3LYP/6-311++G(d,p)//B3LYP/6-31+G(d), B3LYP/6-311+G (2d,p)//B3LYP/6-31+G(d) and B3LYP/6-311++G(d,p)//B3LYP/6-311++G(d,p) levels of theory for the calculation of proton and carbon chemicals shifts and coupling constants for 25 nitro-substituted five-membered heterocycles. Difference (1D NOE) spectra in combination with long-range gHMBC experiments were used as tools for the structural elucidation of nitro-substituted five-membered heterocycles. The assigned NMR data (chemical shifts and coupling constants) for all compounds were found to be in good agreement with theoretical calculations using the GIAO DFT method. The magnitudes of one-bond (1JCH) and long-range (nJCH, n>1) coupling constants were utilized for unambiguous differentiation between regioisomers of nitro-substituted five-membered heterocycles.  相似文献   

15.
Collision-induced dissociation of Cu+(acetone)(x), x = 1-4, with Xe is studied as a function of kinetic energy using guided ion beam mass spectrometry. In all cases, the primary and lowest energy dissociation channel observed is endothermic loss of one acetone molecule. The primary cross section thresholds are interpreted to yield 0 and 298 K bond energies after accounting for the effects of multiple ion-neutral collisions, internal energy of the complexes, and dissociation lifetimes. Density functional calculations at the B3LYP/6-31G* level of theory are used to determine the structures of these complexes and provide molecular constants necessary for the thermodynamic analysis of the experimental data. Theoretical bond dissociation energies are determined from single point calculations at the B3LYP/6-311+G(2d,2p) and MP2(full)/6-311+G(2d,2p) levels, using the B3LYP/6-31G* optimized geometries. The experimental bond energies determined here are in good agreement with previous experimental measurements made in a high-pressure mass spectrometer for the sum of the first and second bond energy (i.e., Cu+(acetone)2 --> Cu+ + 2 acetone) when these results are properly anchored. The agreement between theory and experiment is reasonable in all cases, but varies both with the size of the cluster and the level of theory employed. B3LYP does an excellent job for the x = 1 and 3 clusters, but is systematically low for the x = 2 and 4 clusters such that the overall trends in sequential binding energies are not parallel. In contrast, all MP2 values are somewhat low, but the overall trends parallel the measured values for all clusters. The trends in the measured Cu+(acetone), binding energies are explained in terms of 4s-3d sigma hybridization effects and ligand-ligand repulsion in the clusters.  相似文献   

16.
Gas-phase acidities of CH3Y (Y: NO, C identical to CH, CH=NH, and CH=S), barriers to the identity proton-transfer CH3Y + CH2=Y- reversible CH2=Y- + CH3Y, as well as geometries and charge distributions of CH3Y, CH2=Y- and the transition states of the proton transfers were determined by ab initio methods at the MP2/6-311 + G(d,p)//MP2/6-311 + G(d,p), B3LYP/6-311 + G(d,p), and BPW-91/6-311 + G-(d,p) levels of theory. The acidities were also calculated at the CCSD(T)/6-311 + G(2df,2p) level. To make more meaningful comparisons, the same quantities for previously studied systems (Y: H, CH=CH2, CH=O, CN, NO2) were recalculated at the levels used in the present work. The geometric parameters as well as the group charges indicate that the transition states for all the reactions are imbalanced, although there is no correlation between the degree of imbalance and the pi-acceptor strength of the Y group. Based on multi-parameter correlations with the field (sigma F), resonance (sigma R), and polarizability effect (sigma alpha) substituent constants, the contributions of each of these effects to the acidities and barriers were evaluated. For the Y groups whose sigma F, sigma R, and sigma alpha are unknown (CH=NH, CH=S, C identical to CH), a method for estimating these substituent constants is proposed. The barriers for the CH3Y/CH2=Y- systems are all lower than for the CH4/CH3- system; this contrasts with the situation in solution where the Y groups lead to an increase in the barrier. The reasons for this reversal are analyzed. We also make an attempt to clarify the issue as to why the transition states of these reactions are imbalanced, a question which continues to draw attention in the literature.  相似文献   

17.
The FT-Raman and FT-IR spectra for 3-Ethylpyridine (3-EP) have been recorded in the region 4000-100 cm(-1) and compared with the harmonic vibrational frequencies calculated using HF/DFT (B3LYP) method by employing 6-31G(d,p) and 6-311++G(d,p) basis set with appropriate scale factors. IR intensities and Raman activities are also calculated by HF and DFT (B3LYP) methods. Optimized geometries of the molecule have been interpreted and compared with the reported experimental values of some substituted benzene. The experimental geometrical parameters show satisfactory agreement with the theoretical prediction from HF and DFT. The scaled vibrational frequencies at B3LYP/6-311++G(d,p) seem to coincide with the experimentally observed values with acceptable deviations. The theoretical spectrograms (IR and Raman) have been constructed and compared with the experimental FT-IR and FT-Raman spectra. Some of the vibrational frequencies of the pyridine are effected upon profusely with the C2H5 substitutions in comparison to pyridine and these differences are interpreted.  相似文献   

18.
FT-IR (4000-100 cm(-1)) and FT-Raman (4000-100 cm(-1)) spectra of solid sample of 4-chloro-2-fluoro toluene (4Cl2FT) have been recorded using Bruker IFS 66 V spectrometer. Ab initio-HF (HF/6-311++G (d, p)) and DFT (B3LYP/6-311++G and B3PW91/6-311++G (d, p)) calculations have been performed giving energies, optimized structures, harmonic vibrational frequencies, depolarization ratios, IR intensities, Raman activities. The vibrational frequencies are calculated and scaled values are compared with FT-IR and FT-Raman experimental values. The isotropic HF and DFT analyses showed good agreement with experimental observations. The differences between the observed and scaled wave number values of most of the fundamentals are very small in B3LYP than HF. Comparison of the simulated spectra provides important information about the ability of the computational method (B3LYP) to describe the vibrational modes. The influences of substitutions on the geometry of molecule and its normal modes of vibrations have also been discussed. The changes made by substitutions on the benzene are much responsible for the non-linearity of the molecule. This is an attractive entity for the future studies of non-linear optics.  相似文献   

19.
A comprehensive exploration of the aminolysis mechanism for methyl indole-3-acetate with ammonia is carried out by employing the B3 LYP/6-311++G(d,p), M06-2 X/6-311++G(d,p) and MP2/6-311++G(d,p)//M06-2 X/6-311++G(d,p) levels. Two alterative reaction channels of the concerted and addition/elimination stepwise processes including the uncatalyzed, base-catalyzed reactions are taken into consideration. Subsequently, the substituent effects and solvent effects in methanol are also evaluated at the M06-2 X/6-311++G(d,p) level. The calculated results indicate that the calculated values of M06-2 X level are quite close to those of MP2, the stepwise pathway has more advantages to the concerted one for all of the reaction processes and the catalyst facilitates the proton migration and decreases the energy barriers as well. It is shown that the most preferred mechanism is the based-catalyzed stepwise process, the substituent of NH2 group slightly accelerates all the aminolysis reaction processes, and the solvent effect does not remarkably change the mechanism of the reaction.  相似文献   

20.
The FT-IR and FT-Raman spectra of m-Xylol molecule have been recorded using Bruker IFS 66V spectrometer in the range 4000-100cm(-1). The molecular geometry and vibrational frequencies in the ground state are evaluated using the Hartree-fock (HF) and B3LYP with 6-31+G (d, p), 6-31++G (d, p) and 6-311++G (d, p) basis sets. The computed frequencies are scaled using a suitable scale factors to yield good agreement with the observed values. The HF and DFT analysis agree well with experimental observations. Comparison of the fundamental vibrational frequencies with calculated results by HF and B3LYP methods indicate that B3LYP/6-311++G (d, p) is superior to HF/6-31+G (d, p) for molecular vibrational problems. The complete data of this title compound provide some useful information for the study of substituted benzenes. The influences of Methyl groups on the geometry of benzene and its normal modes of vibrations have also been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号