首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
We derive a sufficient condition for a sparse graph G on n vertices to contain a copy of a tree T of maximum degree at most d on (1 − ε)n vertices, in terms of the expansion properties of G. As a result we show that for fixed d ≥ 2 and 0 < ε < 1, there exists a constant c = c(d, ε) such that a random graph G(n, c/n) contains almost surely a copy of every tree T on (1 − ε)n vertices with maximum degree at most d. We also prove that if an (n, D, λ)-graph G (i.e., a D-regular graph on n vertices all of whose eigenvalues, except the first one, are at most λ in their absolute values) has large enough spectral gap D/λ as a function of d and ε, then G has a copy of every tree T as above. Research supported in part by a USA-Israeli BSF grant, by NSF grant CCR-0324906, by a Wolfensohn fund and by the State of New Jersey. Research supported in part by USA-Israel BSF Grant 2002-133, and by grants 64/01 and 526/05 from the Israel Science Foundation. Research supported in part by NSF CAREER award DMS-0546523, NSF grant DMS-0355497, USA-Israeli BSF grant, and by an Alfred P. Sloan fellowship.  相似文献   

2.
How to decrease the diameter of triangle-free graphs   总被引:3,自引:0,他引:3  
Assume that G is a triangle-free graph. Let be the minimum number of edges one has to add to G to get a graph of diameter at most d which is still triangle-free. It is shown that for connected graphs of order n and of fixed maximum degree. The proof is based on relations of and the clique-cover number of edges of graphs. It is also shown that the maximum value of over (triangle-free) graphs of order n is . The behavior of is different, its maximum value is . We could not decide whether for connected (triangle-free) graphs of order n with a positive ε. Received: October 12, 1997  相似文献   

3.
Let T be any tree of order d≥1. We prove that every connected graph G with minimum degree d contains a subtree T isomorphic to T such that GV(T) is connected.  相似文献   

4.
 A graph G is called preperfect if each induced subgraph G G of order at least 2 has two vertices x, y such that either all maximum cliques of G containing x contain y, or all maximum independent sets of G containing y contain x, too. Giving a partial answer to a problem of Hammer and Maffray [Combinatorica 13 (1993), 199–208], we describe new classes of minimally non-preperfect graphs, and prove the following characterizations: (i) A graph of maximum degree 4 is minimally non-preperfect if and only if it is an odd cycle of length at least 5, or the complement of a cycle of length 7, or the line graph of a 3-regular 3-connected bipartite graph. (ii) If a graph G is not an odd cycle and has no isolated vertices, then its line graph is minimally non-preperfect if and only if G is bipartite, 3-edge-connected, regular of degree d for some d≥3, and contains no 3-edge-connected d -regular subgraph for any 3≤d <d. Received: March 4, 1998 Final version received: August 14, 1999  相似文献   

5.
Given a vertex v of a graph G the second order degree of v denoted as d 2(v) is defined as the number of vertices at distance 2 from v.In this paper we address the following question:What are the sufficient conditions for a graph to have a vertex v such that d2(v) ≥ d(v),where d(v) denotes the degree of v? Among other results,every graph of minimum degree exactly 2,except four graphs,is shown to have a vertex of second order degree as large as its own degree.Moreover,every K-4-free graph or every maximal planar graph is shown to have a vertex v such that d2(v) ≥ d(v).Other sufficient conditions on graphs for guaranteeing this property are also proved.  相似文献   

6.
The well known “real-life examples” of small world graphs, including the graph of binary relation: “two persons on the earth know each other” contains cliques, so they have cycles of order 3 and 4. Some problems of Computer Science require explicit construction of regular algebraic graphs with small diameter but without small cycles. The well known examples here are generalised polygons, which are small world algebraic graphs i.e. graphs with the diameter dclog  k−1(v), where v is order, k is the degree and c is the independent constant, semiplanes (regular bipartite graphs without cycles of order 4); graphs that can be homomorphically mapped onto the ordinary polygons. The problem of the existence of regular graphs satisfying these conditions with the degree ≥k and the diameter ≥d for each pair k≥3 and d≥3 is addressed in the paper. This problem is positively solved via the explicit construction. Generalised Schubert cells are defined in the spirit of Gelfand-Macpherson theorem for the Grassmanian. Constructed graph, induced on the generalised largest Schubert cells, is isomorphic to the well-known Wenger’s graph. We prove that the family of edge-transitive q-regular Wenger graphs of order 2q n , where integer n≥2 and q is prime power, qn, q>2 is a family of small world semiplanes. We observe the applications of some classes of small world graphs without small cycles to Cryptography and Coding Theory.  相似文献   

7.
The pre-coloring extension problem consists, given a graph G and a set of nodes to which some colors are already assigned, in finding a coloring of G with the minimum number of colors which respects the pre-coloring assignment. This can be reduced to the usual coloring problem on a certain contracted graph. We prove that pre-coloring extension is polynomial for complements of Meyniel graphs. We answer a question of Hujter and Tuza by showing that “PrExt perfect” graphs are exactly the co-Meyniel graphs, which also generalizes results of Hujter and Tuza and of Hertz. Moreover we show that, given a co-Meyniel graph, the corresponding contracted graph belongs to a restricted class of perfect graphs (“co-Artemis” graphs, which are “co-perfectly contractile” graphs), whose perfectness is easier to establish than the strong perfect graph theorem. However, the polynomiality of our algorithm still depends on the ellipsoid method for coloring perfect graphs. C.N.R.S. Final version received: January, 2007  相似文献   

8.
The total chromatic number χT (G) of a graph G is the minimum number of colors needed to color the edges and the vertices of G so that incident or adjacent elements have distinct colors. We show that if G is a regular graph and d(G) 32 |V (G)| + 263 , where d(G) denotes the degree of a vertex in G, then χT (G) d(G) + 2.  相似文献   

9.
A connected graph Σ of girth at least four is called a near n-gonal graph with respect to E, where n ≥  4 is an integer, if E is a set of n-cycles of Σ such that every path of length two is contained in a unique member of E. It is well known that connected trivalent symmetric graphs can be classified into seven types. In this note we prove that every connected trivalent G-symmetric graph S 1 K4{\Sigma \neq K_4} of type G12{G^1_2} is a near polygonal graph with respect to two G-orbits on cycles of Σ. Moreover, we give an algorithm for constructing the unique cycle in each of these G-orbits containing a given path of length two.  相似文献   

10.
Let k be an integer with k ≥ 2 and G a graph with order n > 4k. We prove that if the minimum degree sum of any two nonadjacent vertices is at least n + k, then G contains a vertex cover with exactly k components such that k−1 of them are chorded 4-cycles. The degree condition is sharp in general.  相似文献   

11.
On total chromatic number of planar graphs without 4-cycles   总被引:5,自引:0,他引:5  
Let G be a simple graph with maximum degree A(G) and total chromatic number Xve(G). Vizing conjectured thatΔ(G) 1≤Xve(G)≤Δ(G) 2 (Total Chromatic Conjecture). Even for planar graphs, this conjecture has not been settled yet. The unsettled difficult case for planar graphs isΔ(G) = 6. This paper shows that if G is a simple planar graph with maximum degree 6 and without 4-cycles, then Xve(G)≤8. Together with the previous results on this topic, this shows that every simple planar graph without 4-cycles satisfies the Total Chromatic Conjecture.  相似文献   

12.
The Erdős-Sós conjecture says that a graph G on n vertices and number of edges e(G) > n(k− 1)/2 contains all trees of size k. In this paper we prove a sufficient condition for a graph to contain every tree of size k formulated in terms of the minimum edge degree ζ(G) of a graph G defined as ζ(G) = min{d(u) + d(v) − 2: uvE(G)}. More precisely, we show that a connected graph G with maximum degree Δ(G) ≥ k and minimum edge degree ζ(G) ≥ 2k − 4 contains every tree of k edges if d G (x) + d G (y) ≥ 2k − 4 for all pairs x, y of nonadjacent neighbors of a vertex u of d G (u) ≥ k.  相似文献   

13.
We represent a graph by assigning each vertex a finite set such that vertices are adjacent if and only if the corresponding sets have at least two common elements. The 2-intersection number θ2(G) of a graph G is the minimum size of the union of sets in such a representation. We prove that the maximum order of a path that can be represented in this way using t elements is between (t2 - 19t + 4)/4 and (t2 - t + 6)/4, making θ2(Pn) asymptotic to 2√n. We also show the existence of a constant c depending on ? such that, for any tree T with maximum degree at most d, θ2(T) ≤ c(√n)1+?. When the maximum degree is not bounded, there is an n-vertex tree T with θ2(T) > .945n2/3. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
 We prove that for every ε>0 and positive integer r, there exists Δ00(ε) such that if Δ>Δ0 and n>n(Δ,ε,r) then there exists a packing of K n with ⌊(n−1)/Δ⌋ graphs, each having maximum degree at most Δ and girth at least r, where at most εn 2 edges are unpacked. This result is used to prove the following: Let f be an assignment of real numbers to the edges of a graph G. Let α(G,f) denote the maximum length of a monotone simple path of G with respect to f. Let α(G) be the minimum of α(G,f), ranging over all possible assignments. Now let αΔ be the maximum of α(G) ranging over all graphs with maximum degree at most Δ. We prove that Δ+1≥αΔ≥Δ(1−o(1)). This extends some results of Graham and Kleitman [6] and of Calderbank et al. [4] who considered α(K n ). Received: March 15, 1999?Final version received: October 22, 1999  相似文献   

15.
J. H. Kim  V. H. Vu 《Combinatorica》2006,26(6):683-708
Random regular graphs play a central role in combinatorics and theoretical computer science. In this paper, we analyze a simple algorithm introduced by Steger and Wormald [10] and prove that it produces an asymptotically uniform random regular graph in a polynomial time. Precisely, for fixed d and n with d = O(n1/3−ε), it is shown that the algorithm generates an asymptotically uniform random d-regular graph on n vertices in time O(nd2). This confirms a conjecture of Wormald. The key ingredient in the proof is a recently developed concentration inequality by the second author. The algorithm works for relatively large d in practical (quadratic) time and can be used to derive many properties of uniform random regular graphs. * Research supported in part by grant RB091G-VU from UCSD, by NSF grant DMS-0200357 and by an A. Sloan fellowship.  相似文献   

16.
Let G be an edge-colored graph. The monochromatic tree partition problem is to find the minimum number of vertex disjoint monochromatic trees to cover the all vertices of G. In the authors’ previous work, it has been proved that the problem is NP-complete and there does not exist any constant factor approximation algorithm for it unless P = NP. In this paper the authors show that for any fixed integer r ≥ 5, if the edges of a graph G are colored by r colors, called an r-edge-colored graph, the problem remains NP-complete. Similar result holds for the monochromatic path (cycle) partition problem. Therefore, to find some classes of interesting graphs for which the problem can be solved in polynomial time seems interesting. A linear time algorithm for the monochromatic path partition problem for edge-colored trees is given. Supported by the National Natural Science Foundation of China, PCSIRT and the “973” Program.  相似文献   

17.
The average distance μ(G) of a connected graph G of order n is the average of the distances between all pairs of vertices of G, i.e., μ(G) = ()−1 Σ{x,y}⊂V(G) dG(x, y), where V(G) denotes the vertex set of G and dG(x, y) is the distance between x and y. We prove that every connected graph of order n and minimum degree δ has a spanning tree T with average distance at most . We give improved bounds for K3‐free graphs, C4‐free graphs, and for graphs of given girth. © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 1–13, 2000  相似文献   

18.
Chain graphs are exactly bipartite graphs without induced 2K 2 (a graph with four vertices and two disjoint edges). A graph G=(V,E) with a given independent set SV (a set of pairwise non-adjacent vertices) is said to be a chain partitioned probe graph if G can be extended to a chain graph by adding edges between certain vertices in S. In this note we give two characterizations for chain partitioned probe graphs. The first one describes chain partitioned probe graphs by six forbidden subgraphs. The second one characterizes these graphs via a certain “enhanced graph”: G is a chain partitioned probe graph if and only if the enhanced graph G * is a chain graph. This is analogous to a result on interval (respectively, chordal, threshold, trivially perfect) partitioned probe graphs, and gives an O(m 2)-time recognition algorithm for chain partitioned probe graphs.  相似文献   

19.
A Fan Type Condition For Heavy Cycles in Weighted Graphs   总被引:2,自引:0,他引:2  
 A weighted graph is a graph in which each edge e is assigned a non-negative number w(e), called the weight of e. The weight of a cycle is the sum of the weights of its edges. The weighted degree d w (v) of a vertex v is the sum of the weights of the edges incident with v. In this paper, we prove the following result: Suppose G is a 2-connected weighted graph which satisfies the following conditions: 1. max{d w (x),d w (y)∣d(x,y)=2}≥c/2; 2. w(x z)=w(y z) for every vertex zN(x)∩N(y) with d(x,y)=2; 3. In every triangle T of G, either all edges of T have different weights or all edges of T have the same weight. Then G contains either a Hamilton cycle or a cycle of weight at least c. This generalizes a theorem of Fan on the existence of long cycles in unweighted graphs to weighted graphs. We also show we cannot omit Condition 2 or 3 in the above result. Received: February 7, 2000 Final version received: June 5, 2001  相似文献   

20.
We prove that the P 4-transformation is one-to-one on the set of graphs with minimum degree at least 3, and if graphs G and G ' have minimum degree at least 3 then any isomorphism from the P 4-graph P 4(G) to the P 4-graph P 4(G ') is induced by a vertex-isomorphism from G to G ' unless G and G ' both belong to a special family of graphs. Supported by NSFC, PCSIRT and the “973” program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号