首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nu 5 antisymmetric stretching vibration of 1 sigma+g C9 has been observed using direct infrared diode laser absorption spectroscopy of a pulsed supersonic cluster beam. Twenty-eight rovibrational transitions measured in the region of 2079-2081 cm-1 were assigned to this band. A combined least squares fit of these transitions with previously reported nu 6 transitions yielded the following molecular constants for the nu 5 band: nu 0 = 2 079.673 58(17) cm-1, B"= 0.014 321 4(10) cm-1, and B'=0.014 288 9(10) cm-1. The IR intensity of the nu 5 band relative to nu 6 was found to be 0.108 +/- 0.006. Theoretical predictions for the relative intensities vary widely depending upon the level of theory employed, and the experimental value reported here is in reasonable agreement only with the result obtained from the most sophisticated ab initio calculation considered (CCSD).  相似文献   

2.
The nu 3(sigma u) fundamental vibration of 1 sigma g+ Si2C3 has been observed using a laser vaporization-supersonic cluster beam-diode laser spectrometer. Forty rovibrational transitions were measured in the range of 1965.8 to 1970.9 cm-1 with a rotational temperature of 10-15 K. A least-squares fit of these transitions yielded the following molecular constants: nu 3(sigma u)=1968.188 31(18) cm-1, B"=0.031 575 1(60) cm-1, and B'=0.031 437 4(57) cm-1. These results are in excellent agreement with recent Fourier transform infrared (FTIR) measurements of Si2C3 trapped in a solid Ar matrix [J. Chem. Phys. 100, 181(1994)] and with ab initio calculations [J. Chem. Phys. 100, 175 (1994)] which suggest cumulenic-like bonding for Si2C3, analogous to the isovalent C5 carbon cluster.  相似文献   

3.
Absolute intensities have been measured for 26 lines of C2H4 in the nu7 fundamental transition, using a tunable diode-laser spectrometer. These lines with 3< or = J"< or = 21, 2< or = Ka< or = 4, 2< or = Kc< or = 20 are located in the spectral range 920-980 cm(-1). The intensities have been measured by using two methods: the equivalent width method (EWM) and the line profile fit method (FPM). For the last one, three models have been tested: Voigt, Rautian and Galatry profiles.  相似文献   

4.
High-resolution (0.001 cm(-1)) coherent anti-Stokes Raman spectroscopy (CARS) has been used to study the nu1 symmetric CO stretching mode of the quasi-linear molecule carbon suboxide, C3O2. Q-branch transitions are seen that originate from the ground state and from thermally populated levels of the nu7 CCC bending mode, which is of unusually low frequency. The intensity variation of the Q-branch features on cooling to about 120 K in a jet expansion requires the reversal of the order of assignment given in a previous Raman study at low resolution. The identification of the nu1 sigma(g)+ <-- sigma(g)+ transition from the ground state is confirmed by the absence of J(odd) Q-branch lines in the resolved CARS spectrum. Analysis of this band in terms of a quasi-linear model gives a good fit to the observed transitions and leads to vibrational-rotational parameters (in cm(-1)) of nu1 = 2199.9773(12) and (B' - B') = -2.044(6) x 10(-4). Other transitions originating from higher nu7 levels occur at only slightly lower wavenumber values and permit the calculation of the double minimum potential in the Q7 bending coordinate. The results indicate that the ground-state barrier to linearity (21.5 cm(-1)) increases by only 0.6 cm(-1) when the CO symmetric stretch is excited.  相似文献   

5.
Rotational analyses have been carried out for the overtones of the nu(4) (torsion) and nu(6) (in-plane cis-bend) vibrations of the A (1)A(u) state of C(2)H(2). The v(4)+v(6)=2 vibrational polyad was observed in high-sensitivity one-photon laser-induced fluorescence spectra and the v(4)+v(6)=3 polyad was observed in IR-UV double resonance spectra via the ground state nu(3) (Sigma(+) (u)) and nu(3)+nu(4) (Pi(u)) vibrational levels. The structures of these polyads are dominated by the effects of vibrational angular momentum: Vibrational levels of different symmetry interact via strong a-and b-axis Coriolis coupling, while levels of the same symmetry interact via Darling-Dennison resonance, where the interaction parameter has the exceptionally large value K(4466)=-51.68 cm(-1). The K-structures of the polyads bear almost no resemblance to the normal asymmetric top patterns, and many local avoided crossings occur between close-lying levels with nominal K-values differing by one or more units. Least squares analysis shows that the coupling parameters change only slightly with vibrational excitation, which has allowed successful predictions of the structures of the higher polyads: A number of weak bands from the v(4)+v(6)=4 and 5 polyads have been identified unambiguously. The state discovered by Scherer et al. [J. Chem. Phys. 85, 6315 (1986)], which appears to interact with the K=1 levels of the 3(3) vibrational state at low J, is identified as the second highest of the five K=1 members of the v(4)+v(6)=4 polyad. After allowing for the Darling-Dennison resonance, the zero-order bending structure can be represented by omega(4)=764.71, omega(6)=772.50, x(44)=0.19, x(66)=-4.23, and x(46)=11.39 cm(-1). The parameters x(46) and K(4466) are both sums of contributions from the vibrational angular momentum and from the anharmonic force field. For x(46) these contributions are 14.12 and -2.73 cm(-1), respectively, while the corresponding values for K(4466) are -28.24 and -23.44 cm(-1). It is remarkable how severely the coupling of nu(4) and nu(6) distorts the overtone polyads, and also how in this case the effects of vibrational angular momentum outweigh those of anharmonicity in causing the distortion.  相似文献   

6.
The first high resolution spectroscopic data for jet cooled H2DO+ are reported, specifically via infrared laser direct absorption in the OH stretching region with a slit supersonic jet discharge source. Transitions sampling upper (0-) and lower (0+) tunneling states for both symmetric (nu1+ <-- 0+, nu1- <-- 0-, and nu1- <-- 0+) and antisymmetric (nu3+ <-- 0+ and nu3- <-- 0-) OH stretching bands are observed, where +/- refers to wave function reflection symmetry with respect to the planar umbrella mode transition state. The spectra can be well fitted to a Watson asymmetric top Hamiltonian, revealing band origins and rotational constants for benchmark comparison with high-level ab initio theory. Of particular importance are detection and assignment of the relatively weak band (nu1- <-- 0+) that crosses the inversion tunneling gap, which is optically forbidden in H3O+ or D3O+, but weakly allowed in H2DO+ by lowering of the tunneling transition state symmetry from D(3h) to C(2v). In conjunction with other H2DO+ bands, this permits determination of the tunneling splittings to within spectroscopic precision for each of the ground [40.518(10) cm(-1)], nu1 = 1 [32.666(6) cm(-1)], and nu3 = 1 [25.399(11) cm(-1)] states. A one-dimensional zero-point energy corrected potential along the tunneling coordinate is constructed from high-level ab initio CCSD(T) calculations (AVnZ, n = 3,4,5) and extrapolated to the complete basis set limit to extract tunneling splittings via a vibrationally adiabatic treatment. Perturbative scaling of the potential to match splittings for all four isotopomers permits an experimental estimate of DeltaV0 = 652.9(6) cm(-1) for the tunneling barrier, in good agreement with full six-dimensional ab initio results of Rajamaki, Miani, and Halonen (RMH) [J. Chem. Phys. 118, 10929 (2003)]. (DeltaV0 (RMH) = 650 cm(-1)). The 30%-50% decrease in tunneling splitting observed upon nu1 and nu3 vibrational excitations arises from an increase in OH stretch frequencies at the planar transition state, highlighting the transition between sp2 and sp3 hybridizations of the OHD bonds as a function of inversion bending angle.  相似文献   

7.
We present experimental infrared spectra and theoretical electronic structure results for the geometry, anharmonic vibrational frequencies, and accurate estimates of the magnitude and the origin of the ring-puckering barrier in C4F8. High-resolution (0.0015 cm-1) spectra of the nu12 and nu13 parallel bands of perfluorocyclobutane (c-C4F8) were recorded for the first time by expanding a 10% c-C4F8 in helium mixture in a supersonic jet. Both bands are observed to be rotationally resolved in a jet with a rotational temperature of 15 K. The nu12 mode has b2 symmetry under D2d that correlates to a2u symmetry under D4h and consequently has +/- <-- +/- ring-puckering selection rules. A rigid rotor fit of the nu12 band yields the origin at 1292.56031(2) cm-1 with B' = 0.0354137(3) cm-1 and B' ' = 0.0354363(3) cm-1. The nu13 mode is of b2 symmetry under D2d that correlates to b2g under D4h, and in this case, the ring-puckering selection rules are +/- <-- -/+ . Rotational transitions from the ground and first excited torsional states will be separated by the torsional splitting in the ground and excited vibrational states, and indeed, we observe a splitting of each transition into strong and weak intensity components with a separation of approximately 0.0018 cm-1. The strong and weak sets of transitions were fit separately again using a rigid rotor model to give nu13(strong) = 1240.34858(4) cm-1, B' = 0.0354192(7) cm-1, and B' ' = 0.0354355(7) cm-1 and nu13(weak) = 1240.34674(5) cm-1, B' = 0.0354188(9) cm-1, and B' ' = 0.0354360(7) cm-1. High-level electronic structure calculations at the MP2 and CCSD(T) levels of theory with the family of correlation consistent basis sets of quadruple-zeta quality, developed by Dunning and co-workers, yield best estimates for the vibrationally averaged structural parameters r(C-C) = 1.568 A, r(C-F)alpha = 1.340 A, r(C-F)beta = 1.329 A, alpha(F-C-F) = 110.3 degrees , thetaz(C-C-C) = 89.1 degrees , and delta(C-C-C-C) = 14.6 degrees and rotational constants of A = B = 0.03543 cm-1 and C = 0.02898 cm-1, the latter within 0.00002 cm-1 from the experimentally determined values. Anharmonic vibrational frequencies computed using higher energy derivatives at the MP2 level of theory are all within <27 cm-1 (in most cases <5 cm-1) from the experimentally measured fundamentals. Our best estimate for the ring-puckering barrier at the CCSD(T)/CBS (complete basis set) limit is 132 cm-1. Analysis of the C4F8 electron density suggests that the puckering barrier arises principally from the sigmaCC-->sigmaCF hyperconjugative interactions that are more strongly stabilizing in the puckered than in the planar form. These interactions are, however, somewhat weaker in C4F8 than in C4H8, a fact that is consistent with the smaller barrier in the former (132 cm-1) with respect to the latter (498 cm-1).  相似文献   

8.
Vibrational relaxation in methane-oxygen mixtures has been investigated by means of a time-resolved pump-probe technique. Methane molecules are excited into selected rotational levels by tuning the pump laser to 2nu3 lines. The time evolution in population of various vibrational levels after the pumping pulse is monitored by probing, near 3000 cm-1, stretching transitions between various polyads like 2nu3(F2) - nu3, (nu3+2nu4) - 2nu4, and (nu3+nu4) - nu4 transitions. Measurements were performed from room temperature down to 190 K. A numerical kinetic model, taking into account the main collisional processes connecting energy levels up to 6000 cm(-1), has been developed to describe the vibrational relaxation. The model allows us to reproduce the observed signals and to determine rate coefficients of relaxation processes occurring upon CH4-O2 collisions. For the vibrational energy exchange, the rate coefficient of transfer from O2 (v = 1) to CH4 is found equal to (1.32 +/- 0.09) x 10(-12) cm3 molecule-1 s(-1) at 296 K and to (1.50 +/- 0.08) x 10(-12) cm3 molecule(-1) s(-1) at 193 K.  相似文献   

9.
The cavity ringdown spectra of 2-cyclohexen-1-one (2CHO) and its 2,6,6-d3 isotopomer (2CHO-d3) have been recorded in the spectral region near their S1(n,pi)<--S0 band origins which are at 26,081.3 and 26,075.3 cm-1, respectively. The data allow several of the quantum states of nu39, the ring inversion, to be determined for both the ground and excited electronic states. These were utilized to calculate the one-dimensional potential energy functions which best fit the data. The barriers to inversion for the S0 and S1(n,pi) states were found to be 1,900 +/- 300 and 3,550 +/- 500 cm-1, respectively. Density functional theory calculations predict values of 2,090 and 2,265 cm-1, respectively.  相似文献   

10.
de Silva N  Dahl LF 《Inorganic chemistry》2006,45(22):8814-8816
The nonprotonated member, 1 (n = 6), of the previously established nanosized nu3-octahedral [H(6-n)Pt6Ni38(CO)48]n- series (n = 3-6) has been isolated from an aprotic synthetic route and stabilized as the crystal-ordered cyclohexane/acetonitrile-solvated [NMe4]+ salt. A highly precise X-ray determination (cubic; Pa3; Z = 4 with 1 possessing -3 site symmetry) has allowed a comparative analysis of the nonprotonated pseudo-D3d structure of 1 with the monoprotonated structure of 2 (n = 5), which constitutes the only previously reported complete geometry of any member of this extraordinary Pt6-encapsulated nu3-octahedral Pt6Ni38 cluster series.  相似文献   

11.
Collision-induced state-to-state molecular energy transfer between rovibrational states in the 12,700 cm(-1) 4nu(CH) manifold of the electronic ground state X of acetylene (C(2)H(2)) is monitored by time-resolved infrared-ultraviolet double resonance (IR-UV DR) spectroscopy. Rotational J-states associated with the (nu(1) + 3nu(3)) or (1 0 3 0 0)(0) vibrational combination level, initially prepared by an IR pulse, are probed at approximately 299, approximately 296, or approximately 323 nm with UV laser-induced fluorescence via the Alpha electronic state. The rovibrational J-states of interest belong to a congested manifold that is affected by anharmonic, l-resonance, and Coriolis couplings, yielding complex intramolecular dynamics. Consequently, collision-induced rovibrational satellites observed by IR-UV DR comprise not only regular even-DeltaJ features but also supposedly forbidden odd-DeltaJ features. A preceding paper (J. Phys. Chem. A 2003, 107, 10759) focused on low-J-value rovibrational levels of the 4nu(CH) manifold (particularly those with J = 0 and J = 1) whereas this paper examines locally perturbed states at higher values of J (particularly J = 17 and 18, which display anomalous doublet structure in IR-absorption spectra). Three complementary forms of IR-UV DR experiments (IR-scanned, UV-scanned, and kinetic) are used to address the extent to which intramolecular perturbations influence the efficiency of J-resolved collision-induced energy transfer with both even and odd DeltaJ.  相似文献   

12.
Employing a tetradentate N3S(thioether) ligand, LN3S, dioxygen reactivity of a copper(I) complex, [(LN3S)CuI]+ (1) was examined. In CH2Cl2, acetone (at -80 degrees C), or 2-methyltetrahydrofuran (at -128 degrees C), 1 reacts with O2 producing the end-on bound peroxodicopper(II) complex [{(LN3S)CuII}2(mu-1,2-O2(2-))]2+ (2), the first reported copper-dioxygen adduct with sulfur (thioether) ligation. Its absorption spectrum contains an additional low-energy feature (but not a Cu-S CT band) compared to the previously well-characterized N4 ligand complex, [{(TMPA)CuII}2(mu-1,2-O2(2-))]2+ (3) (TMPA = tris(2-pyridylmethyl)amine). Resonance Raman spectroscopy confirms the peroxo formulation {nu(O-O) = 817 cm-1 (16-18O2 Delta = 46 cm-1) and nu(Cu-O) = 545 cm-1 (16-18O2 Delta = 26 cm-1), in close analogy to that known for 3 {nu(O-O) = 827 cm-1 and nu(Cu-O) = 561 cm-1}. Direct evidence for thioether ligation comes from EXAFS spectroscopy {Cu K-edge; Cu-S = 2.4 A}.  相似文献   

13.
The A (1)A(2) states of H(2)CGe and D(2)CGe have been explored for the first time by A-X laser-induced fluorescence (LIF) spectroscopy of the orbitally forbidden S(1)-S(0) transition and stimulated emission pumping (SEP) and wavelength resolved fluorescence studies of the allowed B-A electronic transition. Medium-resolution SEP studies gave the excited A state nu(2), nu(3), nu(4), and nu(6) vibrational frequencies for H(2)C(74)Ge and D(2)C(74)Ge. The 4(1) and 6(1) levels and higher combination and overtone states are strongly Coriolis coupled, which perturbs the rotational subband structure, limiting the accuracy of the determination of the vibrational frequencies. High-resolution SEP studies of the B-A 0(0) (0) band have allowed us to determine the rotational constants of the A state of H(2)C(74)Ge, from which we were able to calculate an approximate r(0) structure with the CH bond length constrained to the ground state value. The zero-point level of D(2)C(74)Ge is substantially perturbed, most plausibly by interaction with an excited vibrational level of the nearby triplet (a (3)A(2)) state.  相似文献   

14.
Optical-optical-optical triple-resonance spectroscopy of (11)BH isolates high Rydberg states that form series converging to rotational state specific ionization potentials in the vibrational levels of (11)BH(+) from nu(+)=0 through 4. Limits defined by a comprehensive fit of these series to state-detailed thresholds yield rovibrational constants describing the X (2)Sigma(+) state of (11)BH(+). The data provide a first determination of the vibrational-rotational interaction parameter alpha(e)=0.4821 cm(-1) and a more accurate estimate of omega(e)=2526.58 cm(-1) together with the higher-order anharmonic terms omega(e)x(e)=61.98 cm(-1) and omega(e)y(e)=-1.989 cm(-1). The deperturbation and global fit of series to state-detailed limits also yield a precise value of the adiabatic ionization potential of (11)BH of 79 120.3+/-0.1 cm(-1), or 9.810 33+/-1x10(-5) eV. High precision is afforded here by the use of graphical analysis techniques, narrow-bandwidth laser systems, and an analysis of newly observed, high principal quantum number Rydberg states that conform well with Hund's case (d) electron-core coupling limit.  相似文献   

15.
Raman spectroscopy at 298 and 77 K of bergenite has been used to characterise this uranyl phosphate mineral. Bands at 995, 971 and 961 cm-1 (298 K) and 1006, 996, 971, 960 and 948 cm-1 (77K) are assigned to the nu1(PO4)3- symmetric stretching vibration. Three bands at 1059, 1107 and 1152 cm-1 (298 K) and 1061, 1114 and 1164 cm-1 (77 K) are attributed to the nu3(PO4)3- antisymmetric stretching vibrations. Two bands at 810 and 798 cm-1 (298 K) and 812 and 800 cm-1 (77 K) are attributed to the nu1 symmetric stretching vibration of the (UO2)2+ units. Bands at 860 cm-1 (298 K) and 866 cm-1 (77 K) are assigned to the nu3 antisymmetric stretching vibrations of the (UO2)2+ units. UO bond lengths in uranyls, calculated using the wavenumbers of the nu1 and nu3(UO2)2+ vibrations with empirical relations by Bartlett and Cooney, are in agreement with the X-ray single crystal structure data. Bands at (444, 432, 408 cm-1) (298 K), and (446, 434, 410 and 393 cm-1) (77 K) are assigned to the split doubly degenerate nu2(PO4)3- in-plane bending vibrations. The band at 547 cm-1 (298 K) and 549 cm-1 (77 K) are attributed to the nu4(PO4)3- out-of-plane bending vibrations. Raman bands at 3607, 3459, 3295 and 2944 cm-1 are attributed to water stretching vibrations and enable the calculation of hydrogen bond distances of >3.2, 2.847, 2.740 and 2.637 A. These bands prove the presence of structurally nonequivalent hydrogen bonded water molecules in the structure of bergenite.  相似文献   

16.
Forty three vibronic levels of C2H2+, X 2Pi u, with upsilon4 = 0-6, upsilon5 = 0-3, and K = 0-4, lying at energies of 0-3520 cm(-1) above the zero-point level, have been recorded at rotational resolution. These levels were observed by double resonance, using 1+1' two-color pulsed-field ionization zero-kinetic-energy photoelectron spectroscopy. The intermediate states were single rovibrational levels chosen from the A1Au, 4nu3 (K = 1-2), 5nu3 (K = 1), nu2+4nu3 (K = 0), and 47,206 cm(-1) (K = 1) levels of C2H2. Seven of the trans-bending levels of C2H2+ (upsilon4 = 0-3, K = 0-2) had been reported previously by Pratt et al. [J. Chem. Phys. 99, 6233 (1993)]; our results for these levels agree well with theirs. A full analysis has been carried out, including the Renner-Teller effect and the vibrational anharmonicity for both the trans- and cis-bending vibrations. The rotational structure of the lowest 16 vibronic levels (consisting of the complete set of levels with upsilon4 + upsilon5 < or = 2, except for the unobserved upper (2Pi u component of the 2nu4 overtone) could be fitted by least squares using 16 parameters to give an rms deviation of 0.21 cm(-1). The vibronic coupling parameter epsilon5 (about whose magnitude there has been controversy) was determined to be -0.0273(7). For the higher vibronic levels, an additional parameter, r45, was needed to allow for the Darling-Dennison resonance between the two bending manifolds. Almost all the observed levels of the upsilon4 + upsilon5 = 3 and 4 polyads (about half of the predicted number) could then be assigned. In a final fit to 39 vibronic levels with upsilon4 + upsilon5 < or = 5, an rms deviation of 0.34 cm(-1) was obtained using 20 parameters. An interesting finding is that Hund's spin-coupling cases (a) and (b) both occur in the Sigmau components of the nu4 + 2nu5 combination level. The ionization potential of C2H2 (from the lowest rotational level of the ground state to the lowest rotational level of the cation) is found to be 91,953.77 +/- 0.09 cm(-1) (3sigma).  相似文献   

17.
The complex dication of the diruthenium(II) compound {(mu-tppz)[Ru(bik)Cl]2}(ClO4)2 can be oxidized and reduced in two one-electron steps each. In CH3CN/0.1 M Bu4NPF6, the odd-electron intermediates{(mu-tppz)[Ru(bik)Cl]2}n+, n=1 and 3, have comproportionation constants of 7x10(8) and 1x10(5), respectively. Both exhibit near-infrared absorptions, in the case of n=3 the 1640 nm band (epsilon=1200 M-1 cm-1, Deltanu1/2=1560 cm-1) is attributed to an intervalence charge-transfer transition. While the mixed-valent intermediate (n=3) is EPR silent even at 4 K, the n=1 form shows g(parallel) 2.005 and g( perpendicular) 1.994 at that temperature, signifying a diruthenium(II) complex of the tppz*- radical anion. The variation of energy and intensity of nuCO and of the ring vibration band around 1590 cm-1 has been monitored not only for {(mu-tppz)[Ru(bik)Cl]2}n+, n=0-4, but also for the mononuclear {(tppz)Ru(bik)Cl}n+, n=0-2. In the dinuclear complex the carbonyl stretching bands of the spectator ligand bik are shifted by about 15 cm-1 on each one-electron-transfer step, increasing with the positive charge. The mixed-valent {(mu-tppz)[Ru(bik)Cl]2}3+ shows a perceptibly broader nuCO band, suggesting incomplete valence averaging (partial localization).  相似文献   

18.
Absolute absorption cross sections of the absorption spectrum of the 2nu1 band of the HO2 radical in the near-IR region were measured by continuous wave cavity ring-down spectroscopy (cw-CRDS) coupled to laser photolysis in the wavelength range 6604-6696 cm(-1) with a resolution better than 0.003 cm(-1). Absolute absorption cross sections were obtained by measuring the decay of the HO2 self-reaction, and they are given for the 100 most intense lines. The most important absorption feature in this wavelength range was found at 6638.20 cm(-1), exhibiting an absorption cross section of sigma = 2.72 x 10(-19) cm2 at 50 Torr He. Using this absorption line, we obtain a detection limit for the HO2 radical at 50 Torr of 6.5 x 10(10) cm(-3).  相似文献   

19.
Fourier transform infrared absorption spectra containing evidence for about two dozen spectral tunneling doublets are reported for gaseous tropolone(OH), tropolone (OD), and 18O,18O-tropolone(OH) in the 800 to 300 cm-1 spectral range. No FTIR absorption was detected in the 300-150 cm-1 range. The known zero-point (ZP) tunneling splitting values Delta0 = 0.974 cm-1 for tropolone(OH) (Tanaka et al.) and 0.051 cm-1 for tropolone(OD) (Keske et al.) allow vibrational state-specific tunneling splittings Deltav to be estimated for fundamentals including three with strong O...O stretching displacements [cf. for tropolone(OH) nu13(a1) = 435.22 cm-1 with HDelta13 = 1.71 cm-1 = 1.76 HDelta0, and for tropolone(OD) nu13(a1) = 429.65 cm-1 with DDelta13 = 0.32 cm-1 = 6.27 DDelta0]. The majority of Deltav splittings in the sub-800 cm-1 range are dilated relative to the isotopomer Delta0 values. The FTIR spectra demonstrate the presence of dynamic couplings and potential function anharmonicity in addition to revealing Deltav splittings and many OH/D and 18O/16O isotope effects. Approximate values are obtained for the ZP splittings 88Delta0 and 86Delta0 of the doubly and singly 18O-labeled isotopomers of tropolone(OH). The diverse values of the observed Deltav/Delta0 splitting ratios underscore the inherent multidimensionality and corner-cutting activities entering the state-specific tunneling processes of the tropolone tautomerization reaction.  相似文献   

20.
The rotation-vibration spectrum of DCOOD has been recorded in the carbonyl stretch (nu(3)) region. Using a standard S-reduced Watson Hamiltonian in the I(r) representation, 225 lines could be fitted to a vibrational-rotational band. A full set of molecular constants was obtained. The nu(3) band is found to be strongly perturbed in the K(a): 1<--1 and K(a): 2<--2 subband. The perturbation is attributed to a Fermi resonance with the 2nu(8) overtone band and Coriolis coupling to a combination band (nu(4)+nu(7)). The band center is determined to be 1725.1218(1) cm(-1) which is more than 10 cm(-1) shifted compared to previous studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号