首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Isoflavone derivatives were synthesized via intramolecular cyclization of 3‐(2‐bromophenyl)‐3‐oxopropanal derivatives, using CuI as the catalyst, 2‐picolinic acid (=pyridine‐2‐carboxylic acid) as the ligand, K2CO3 as the base, and DMF as the solvent, in up to 96% yield. The synthesis is functional group‐tolerant.  相似文献   

2.
2‐(1‐Aryl‐2‐methoxyethenyl)benzaldehydes 2 , obtained by successive treatment of 1‐(1‐aryl‐2‐methoxyethenyl)‐2‐bromobenzenes 1 with BuLi and 1‐formylpiperidine, were transformed to the corresponding phenylhydrazones 3 on treatment with PhNHNH2. When these hydrazones were allowed to react with conc. HBr, cyclization, followed by dehydrogenation with air occurred, furnished 3‐aryl‐2‐methoxyinden‐1‐one (Z)‐phenylhydrazones 4 .  相似文献   

3.
4‐Arylisocoumarins (=4‐aryl‐1H‐2‐benzopyran‐1‐ones) 6 were prepared from 2‐(1‐aryl‐2‐methoxyethenyl)‐1‐bromobenzenes 1 . Successive treatment of these bromo styrenes with BuLi and 1‐formylpiperidine gave a mixture of (E)‐ and (Z)‐2‐(1‐aryl‐2‐methoxyethenyl)benzaldehydes 2 . Hydrolysis of (Z)‐isomers with conc. HBr, followed by pyridinium chlorochromate (PCC) oxidation of the resulting 1H‐2‐benzopyran‐1‐ol derivatives 4 (and 5 ), afforded the desired products.  相似文献   

4.
A novel method is reported for the synthesis of 9,9‐disubstituted 9H‐pyrrolo[1,2‐a]indoles. Cyclization of 1‐[2‐(1‐aryl(or methyl)ethenyl)phenyl]‐1H‐pyrroles, which can be easily prepared from 2‐(1‐aryl(or methyl)ethenyl)anilines, proceeds smoothly, in general, at 0° in the presence of a catalytic (or an equimolar) amount of HI in MeCN to provide the desired products.  相似文献   

5.
A two‐step synthesis of 1‐substituted 3‐alkoxy‐1H‐isoindoles 4 has been developed. Thus, the reaction of 2‐(dialkoxymethyl)phenyllithium compounds, which are easily generated in situ by Br/Li exchange between 1‐bromo‐2‐(dialkoxymethyl)benzenes 1 and BuLi in THF at ?78°, with nitriles afforded [2‐(dialkoxymethyl)phenyl]methanimines 2 , which were treated with a catalytic amount of TsOH?H2O in refluxing CHCl3 to give the desired products in reasonable yields. Similarly, 3‐aryl‐1‐ethoxy‐1‐methyl‐1H‐isoindoles 7 have been prepared starting from 1‐bromo‐2‐(1,1‐diethoxyethyl)benzenes 5 .  相似文献   

6.
An efficient approach for the preparation of functionalized 5‐aryl‐3‐(methylsulfanyl)‐1H‐pyrazoles 2 is described. This three‐component reaction between benzaldehydes 1 , NH2NH2?H2O, and 1,1‐bis(methylsulfanyl)‐2‐nitroethene proceeds in EtOH under reflux conditions in good‐to‐excellent yields. The structures of 2 were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS). A plausible mechanism for this type of reaction is proposed (Scheme 2).  相似文献   

7.
A four‐step synthesis of 1‐substituted 5‐(2‐aminophenyl)‐1H‐pyrazoles 5 as a novel type of histamine analogs and versatile building blocks for further transformations was developed. The synthesis starts from commercially available 2‐nitroacetophenone ( 12 ), which is converted into the enamino ketone 13 as the key intermediate. Cyclization of the key intermediate 13 with monosubstituted hydrazines 14a – 14l afforded the 5‐(2‐nitrophenyl)‐1H‐pyrazoles 17a – 17l . Finally, catalytic hydrogenation of the nitro compounds 17a, 17c – 17e , and 17g – 17j furnished the title compounds 5a, 5c – 5e , and 5g – 5j , respectively, in good yields. As demonstrated by some further transformations, additional functionalization of compounds 17 and 5 is feasible, either by electrophilic substitution at C(4) of the pyrazole ring, or at the NH2 group.  相似文献   

8.
A new and facile method for the preparation of 2‐substituted 2,3‐dihydro‐3,3‐dimethyl‐1H‐isoindol‐1‐ones 3 and 3,3‐disubstituted (E)‐1‐(arylimino)‐1,3‐dihydroisobenzofurans 6 has been developed. Thus, treatment of N‐alkyl(or aryl)‐2‐(1‐methylethen‐1‐yl)benzamides 2 with concentrated hydriodic acid (HI) in MeCN at room temperature afforded 3 . Similar treatment of N‐aryl‐2‐(1‐phenylethen‐1‐yl)benzamide 5 with concentrated HI at 0° afforded 6 .  相似文献   

9.
An efficient method for the synthesis of 2‐aryl‐2,3‐dihydro‐3‐sulfanyl‐1H‐isoindol‐1‐ones 1 via Pummerer‐type cyclization of N‐aryl‐2‐(sulfinylmethyl)benzamides 2 is described. Thus, treatment of these sulfinyl‐benzamides 2 , easily prepared from 2‐(bromomethyl)benzoates 3 in three steps, with Ac2O at ca. 100° resulted in the formation of the desired isoindolones 1 in generally good yields.  相似文献   

10.
An efficient approach for the preparation of functionalized 2‐aryl‐2,5‐dihydro‐5‐oxo‐4‐[2‐(phenylmethylidene)hydrazino]‐1H‐pyrroles is described. The four‐component reaction between aldehydes, NH2NH2?H2O, dialkyl acetylenedicarboxylates, and 1‐aryl‐N,N′‐bis(arylmethylidene)methanediamines proceeds in EtOH under reflux in good‐to‐excellent yields (Scheme 1). The structures of 4 were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS, and, in the case of 4f , by X‐ray crystallography). A plausible mechanism for this type of reaction is proposed (Scheme 2).  相似文献   

11.
Manganese(III)‐promoted cyclization of N‐alkenylmalonamides (=N‐alkenylpropanediamides) gave 3‐(aryl/(alkylamino)carbonyl) β‐lactams as well as 3‐(aryl/(alkylamino)thiocarbonyl) β‐lactams. The relative configuration of the obtained products was unambiguously determined by X‐ray crystallography. The proposed method is very useful for the one‐pot synthesis of a number of 3‐(aryl/(alkylamino)carbonyl) β‐lactams, especially those containing an amino(thiocarbonyl) moiety, which are not selectively accessible by other methods.  相似文献   

12.
2‐Aryl‐2,3‐dihydro‐4H‐pyran‐4‐ones were prepared in one step by cyclocondensation of 1,3‐diketone dianions with aldehydes. The use of HCl (10%) for the aqueous workup proved to be very important to avoid elimination reactions of the 5‐aryl‐5‐hydroxy 1,3‐diones formed as intermediates. The TiCl4‐mediated cyclization of a 2‐aryl‐2,3‐dihydro‐4H‐pyran‐4‐one with 1,3‐silyloxybuta‐1,3‐diene resulted in cleavage of the pyranone moiety and formation of a highly functionalized benzene derivative.  相似文献   

13.
A novel procedure for the synthesis of 14‐aryl‐14H‐dibenzo[a,j]xanthenes through one‐pot condensation of naphthalen‐2‐ol with arenecarbaldehydes in the presence of N‐bromosuccinimide (NBS) as catalyst under solvent‐free conditions is described.  相似文献   

14.
A series of 6‐aminoindolo[2,1‐a]isoquinoline‐5‐carbonitriles 4 have been prepared by treatment of 2‐(2‐bromophenyl)‐1H‐indoles 1 , available from 1‐(2‐bromophenyl)ethanones or 1‐(2‐bromophenyl)propan‐1‐ones by using Fischer indole synthesis, with propanedinitrile in the presence of a catalytic amount of CuBr and an excess of K2CO3 in DMSO at 100°.  相似文献   

15.
Methyl (2Z,6Z,10E,14E)‐ ( 3 ) and methyl (2E,6Z,10E,14E)‐geranylfarnesoate ( 4 ) were prepared, and then individually cyclized in the presence of the superacid FSO3H. In the case of substrate 3 , the scalaranic ester 9 (26%) and the cheilanthanic ester 10 (39%) were isolated. Under the same conditions, substrate 4 afforded a mixture of the corresponding stereoisomers 11 (25%) and 12 (63%). The observed product selectivity supports that the internal, (6Z)‐configured C?C bond in these and other biologically relevant substrates plays an essential role in the cyclization process.  相似文献   

16.
The reaction of 1‐fluoro‐2‐lithiobenzenes, generated from 1‐bromo‐2‐fluorobenzenes 1 and BuLi, with 2‐halobenzaldehydes and subsequent oxidation of the resulting alcohols 2 afforded (2‐fluorophenyl)(2‐halophenyl)methanones 3 , which, on treatment with benzenamines or arylmethanamines, followed by NaH, gave rise efficiently to 10‐aryl‐ or 10‐(arylmethyl)acridin‐9(10H)‐ones ( 5 or 7 ), respectively.  相似文献   

17.
The zwitterionic 1 : 1 intermediates generated by addition of Ph3P to acetylenic esters is trapped by 1‐[(aryl)chloromethylene]‐2‐phenylhydrazines (=N‐phenylarenecarbohydrazonoyl chlorides) to yield functionalized 3‐aryl‐1‐phenyl‐1H‐pyrazoles in good yields.  相似文献   

18.
The hitherto unreported, highly functionalized 1H‐pyrazole‐3‐carboxylates 3 have been synthesized in good yields via a one‐pot three‐component domino reaction of phenylhydrazines, dialkyl acetylenedicarboxylates, and ninhydrin under mild conditions for the first time. No co‐catalyst or activator is required for this multicomponent reaction, and the reaction is, from an experimental point of view, simple to perform (Scheme 1). The structures of compounds 3 were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses. A plausible mechanism for this type of cyclization/addition reaction is proposed (Scheme 2).  相似文献   

19.
A safe, efficient, and improved procedure for the regioselective synthesis of 1‐(2‐hydroxyethyl)‐1H‐1,2,3‐triazole derivatives under ambient conditions is described. Terminal alkynes reacted with oxiranes and NaN3 in the presence of a copper(I) catalyst, which is prepared by in situ reduction of the copper(II) complex 4 with ascorbic acid, in H2O. The regioselective reactions exclusively gave the corresponding 1,4‐disubstituted 1H‐1,2,3‐triazoles in good to excellent yields. This procedure avoids the handling of organic azides as they are generated in situ, making this already powerful click process even more user‐friendly and safe. The remarkable features of this protocol are high yields, very short reaction times, a cleaner reaction profile in an environmentally benign solvent (H2O), its straightforwardness, and the use of nontoxic catalysts. Furthermore, the catalyst could be recovered and recycled by simple filtration of the reaction mixture and reused for ten consecutive trials without significant loss of catalytic activity. No metal‐complex leaching was observed after the consecutive catalytic reactions.  相似文献   

20.
An efficient one‐pot synthesis of 3‐[(4,5‐dihydro‐1H‐pyrrol‐3‐yl)carbonyl]‐2H‐chromen‐2‐one (=3‐[(4,5‐dihydro‐1H‐pyrrol‐3yl)carbonyl]‐2H‐1‐benzopyran‐2‐one) derivatives 4 by a four‐component reaction of a salicylaldehyde 1 , 4‐hydroxy‐6‐methyl‐2H‐pyran‐2‐one, a benzylamine 2 , and a diaroylacetylene (=1,4‐diarylbut‐2‐yne‐1,4‐dione) 3 in EtOH is reported. This new protocol has the advantages of high yields (Table), and convenient operation. The structures of these coumarin (=2H‐1‐benzopyran‐2‐one) derivatives, which are important compounds in organic chemistry, were confirmed spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses. A plausible mechanism for this reaction is proposed (Scheme 2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号