首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A facile approach towards the scaled-up synthesis of a novel hierarchical sieve-like structure of mesoporous silica nanoparticle aggregates (hsMSNA) with high drug encapsulation efficiency and sustained release behaviors acting as a drug delivery system in the field of nanomedicine.  相似文献   

2.
本综述重点介绍了近年来普鲁兰多糖作为药物释放系统载体材料的研究进展及其在药物释放系统中的应用情况。  相似文献   

3.
Three kinds of highly ordered SBA-15 mesoporous materials with different pore sizes and morphologies denoted as LPS-SBA-15 (stick-like with pore size 7.28 nm), CPS-SBA-15 (stick-like with pore size 5.96 nm) and T-SBA-15 (tablet-like with pore size 4.64 nm) have been prepared, characterized and employed as carrier materials. The release behaviors of the ibuprofen in a simulated body fluid from these mesoporous silica materials were studied. The influences of pore size and exterior morphologies of mesoporous silica on the release behaviors of ibuprofen have been investigated. It has been found that the release becomes fast with increasing of pore size and slow with extending of transport pathway, and that the release rate of ibuprofen from the three kinds of SBA-15 is LPS-SBA-15 > T-SBA-15 > CPS-SBA-15. The results show that the inner structure as well as the exterior morphologies of SBA-15 mesoporous silica can seriously affect the release behaviors of ibuprofen.  相似文献   

4.
Mesoporous silica nanoparticles (MSN) have been widely used for drug delivery due to their large specific surface area and excellent biocompatibility. However, the mesoporous structure of MSN would lead to the inevitable “premature release” of the drugs, and therefore the modification of MSN for controlled delivery seems to be a necessary step. Herein, chitosan (CS) was used for the surface functionalization of MSN via amidation reaction, and the introduced CS could function as a “gatekeeper” and the drug of methotrexate (MTX) might be encapsulated in the mesopores of MSN. As a result, the “premature release” of the encapsulated MTX could be effectively circumvented with the aid of the CS cap. More importantly, the drug delivery from the hybrid of MSN and CS (MSN/CS) can be endowed with pH-sensitivity by the introduction of CS because the amide bonding between CS and MSN is highly pH-sensitive. The cumulative release of MTX from the MSN/CS is more pronounced at pH 5.0 (80.86%) than those at pH 6.8 (40.46%) and pH 7.4 (18.25%).  相似文献   

5.
Smart polymers are a special class of polymers, which respond to the various external stimuli by changing their properties. Recent developments in synthetic polymer chemistry have provided the possibility of designing and synthesis of various new stimuli-responsive polymers. These stimuli-responsive polymers can be used to prepare smart drug delivery systems (DDS) by grafting them on various nanomaterials. The main aim of this review is to present collective information on various stimuli-responsive polymers grafted on silica nanoparticles for the preparation of smart DDS. The stimuli covered are pH, temperature, redox, reactive oxygen species (ROS), glucose concentration, enzymes, magnetic field, and so forth. The structures of various stimuli-responsive polymers are shown with their relevance to the preparation of smart DDS. The crucial roles of macromolecular design and synthesis of smart polymers in the development of stimuli-responsive DDS are discussed with examples from literature and the challenges that still exist in this area of research are presented.  相似文献   

6.
《Comptes Rendus Chimie》2014,17(9):913-919
Different cobalt loadings (3, 6, 12, 24 wt%) were impregnated using the double-solvent technique on SBA-15 calcined at 500 °C presenting a high specific surface area. The impregnated solids were stabilized at 450 °C in the air. The impregnation of cobalt led to the incorporation of cobalt oxide nanoparticles in the mesoporosity of the SBA-15. The cobalt nanoparticles were easily reducible compared to similar solids prepared by different methods. The presence of these nanoparticles enhanced significantly the reactivity of the catalysts in the considered reaction. The addition of more than 12 wt% of cobalt did not enhance the catalytic reactivity due to the deposition of cobalt oxide species on the surface of the support. The cobalt-impregnated solids are efficient in decreasing the oxidation temperature of different probe molecules and are totally selective towards the formation of CO2 and H2O.  相似文献   

7.
A pH, redox and near infrared (NIR) irradiation tri-responsive dual-drug delivery system (DDDS) is constructed for the treatment of osteosarcoma. Methotrexate (MTX) is encapsulated into the mesoporous silica nanoparticles (MSNs) by polydopamine (PDA), and then the core–shell structured MTX/MSNs@PDA is embedded into the graphene oxide (GO) nanosheets to further enhance the photothermal conversion capability of this system. The resultant MTX/MSNs@PDA@GO is co-encapsulated with naringin (Nar) into the hydrogels of carboxymethyl cellulose (CMC) and cystamine (Cys) generated through amidation reaction. The disulfide linkage (–S–S–) in Cys can be reduced to sulphydryl groups (–SH) by glutathione (GSH), resulting in the degradation of the hydrogels; on the other hand, both PDA and the amide linkage between CMC and Cys are pH-sensitive. Therefore, the constructed DDDS can be used for pH-, redox- and NIR irradiation-responsive delivery of MTX and Nar. Finally, the validity of the developed DDDS is evaluated by cytotoxicity test.  相似文献   

8.
A series of pure silica MSU and carboxylic-modified MSU materials were prepared. The formation of mesoporous silica materials with terminal carboxylic groups on pore surface was performed by the acid-catalyzed hydrolysis of cyano to carboxylic. Then their potential applications in controlled drug delivery carriers were investigated. Drug famotidine was selected as a model molecule out of the consideration of the terminal amino groups in its molecule. The adsorption experiments show significant adsorption of famotidine on the carboxylic-modified MSU materials. And, the functionalization level of carboxylic groups has been found to be the key factor affecting the adsorption capacities of the modified MSU materials for famotidine. Subsequently, three kinds of release fluids, including simulated gastric medium, simulated intestinal medium, and simulated body fluid, were used to test the famotidine release rate from the carboxylic-modified MSU material. Obvious delayed effect has been observed for the famotidine release from the carboxylic-modified mesoporous silica material under the in vitro assays.  相似文献   

9.
Highly dispersed gold nanoparticles have been incorporated into the pore channels of SBA-15 mesoporous silica through a newly developed strategy assisted by microwave radiation (MR). The sizes of gold are effectively controlled attributed to the rapid and homogeneous nucleation, simultaneous propagation and termination of gold precursor by MR. Diol moieties with high dielectric and dielectric loss constants, and hence a high microwave activation, were firstly introduced to the pore channels of SBA-15 by a simple addition reaction between amino group and glycidiol and subsequently served as the reduction centers for gold nanoparticles. Extraction of the entrapped gold from the nanocomposite resulted in milligram quantities of gold nanoparticles with low dispersity. The successful assembly process of diol groups and formation of gold nanoparticles were monitored and tracked by solid-state NMR and UV-vis measurements. Characterization by small angle X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicated that the incorporation of gold nanoparticles would not breakup the structural integrity and long-range periodicity of SBA-15. The gold nanoparticles had a narrow size distribution with diameters in the size range of 5-10 nm through TEM observation. The average particles size is 7.9 nm via calculation by the Scherrer formula and TEM measurements. Nitrogen adsorption and desorption isotherms gave further evidence that the employed method was efficient and gold nanoparticles were successfully incorporated into the pore channels of SBA-15.  相似文献   

10.
Among smart activable nanomaterials used for nanomedicine applications, carbon-based nanocomposites are well known to ensure phototherapy while their use for controlled drug delivery is still rarely investigated. In this work, original hybrid mesoporous silica (MS)–coated carbon nanotubes (CNTs) nanoplatforms have been designed to provide phototherapy combined with drug release mediated by NIR laser excitation. The responsive CNT@MS are chemically modified with original isobutyramide (IBAM) grafts acting as non-covalent binders, which ensure a very high drug loading capacity (≥to 80 wt%) of the antitumor drug doxorubicin (DOX) as well as the final adsorption of a human serum albumin (HSA) shell as biocompatible interface and drug gate-keeping. The drug is demonstrated to unbind from the nanocomposite only upon photothermal excitation and to release in the solution. Such smart platforms are further shown to deliver drug upon several pulsatile NIR excitations with controlled temperature profiles. Regarding antitumor action, we demonstrate here that the NIR light induced photothermic effect from the nanocomposites is the main effect accounting for cancer cell toxicity and that DOX delivery mediated by the NIR light brings an additional toxicity allowing a synergistic effect to efficiently kill tumor cells. Finally, when our nanocomposites are embedded within a hydrogel mimicking extracellular matrix, the resulting smart responsive scaffolds efficiently release DOX upon NIR light to the cells localized above the composite hydrogel. These results demonstrate that such nanocomposites are highly promising as new components of implantable antitumor scaffolds that are able to respond to external stimuli in time and location for a better disease management.  相似文献   

11.
Chemotherapy is the most common treatment for all cancer patients but this treatment poses many side effects due to lack of drug’s selectivity. To overcome this problem, utilizing a better and more effective delivery agent is the solution. Mesoporous silica nanoparticles (MSNs) emerged as a promising platform in development of drug delivery agent. This is due to its desirable properties such as tunable pores, large surface area, good biocompatibility and easy functionalization. Furthermore, these properties can be tuned through the utilization of alternative template such as pyridinium ionic liquid. Besides, by employing surface functionalization, the effectiveness of MSNs as drug delivery agent may also increase. This work reported the usage of 1-hexadecylpyridinium bromide ionic liquid as template for MSNs production and the surface of MSNs was then further functionalized via post – grafting method in order to obtain MSN – NH2, MSN – SH and MSN – COOH as drug carrier, respectively. These functionalized MSNs were then used to study the drug loading and drug release of hydrophilic drug, gemcitabine and hydrophobic drug, quercetin. For quercetin, MSN-NH2 had the highest drug loading percentage (72%) and slowest release (14%) in 48 h while for gemcitabine, it was found that MSN-COOH had the highest drug loading percentage (45%) and slowest release (15%) in 48 h. Based on the results, it is suggested that mesoporous silica nanoparticle with surface functionalization has suitable properties for controlled drug release which gives constant release behavior over a period of time to avoid repeated administration of drug where the drug is administered at a fixed dosage and regular time interval.  相似文献   

12.
《中国化学快报》2020,31(12):3158-3162
Chemo-photothermal treatment is one of the most efficient strategies for cancer therapy. However, traditional drug carriers without near-infrared absorption capacity need to be loaded with materials behaving photothermal properties, as it results in complicated synthesis process, inefficient photothermal effects and hindered NIR-mediated drug release. Herein we report a facile synthesis of a polyethylene glycol (PEG) linked liposome (PEG-liposomes) coated doxorubicin (DOX)-loaded ordered mesoporous carbon (OMC) nanocomponents (PEG-LIP@OMC/DOX) by simply sonicating DOX and OMC in PEG-liposomes suspensions. The as-obtained PEG-LIP@OMC/DOX exhibits a nanoscale size (600 ± 15 nm), a negative surface potential (−36.70 mV), high drug loading (131.590 mg/g OMC), and excellent photothermal properties. The PEG-LIP@OMC/DOX can deliver loaded DOX to human MCF-7 breast cancer cells (MCF-7) and the cell toxicity viability shows that DOX unloaded PEG-LIP@OMC has no cytotoxicity, confirming the PEG-LIP@OMC itself has excellent biocompatibility. The NIR-triggered release studies demonstrate that this NIR-responsive drug delivery system enables on-demand drug release. Furthermore, cell viability results using human MCF-7 cells demonstrated that the combination of NIR-based hyperthermal therapy and triggered chemotherapy can provide higher therapeutic efficacy than respective monotherapies. With these excellent features, we believe that this phospholipid coating based multifunctional delivery system strategy should promote the application of OMC in nanomedical applications.  相似文献   

13.
Stimuli‐responsive polymer nanoparticles are playing an increasingly more important role in drug delivery applications. However, limited knowledge has been accumulated about processes which use stimuli‐responsive polymer nanospheres (matrix nanoparticles whose entire mass is solid) to carry and deliver hydrophobic therapeutics in aqueous solution. In this research, pyrene was selected as a model hydrophobic drug and a pyrene‐loaded core‐shell structured nanosphere named poly(DEAEMA)‐poly(PEGMA) was designed as a drug carrier where DEAEMA and PEGMA represent 2‐(diethylamino)ethyl methacrylate and poly(ethylene glycol) methacrylate, respectively. The pyrene‐loaded core‐shell nanospheres were prepared via an in situ two‐step semibatch emulsion polymerization method. The particle size of the core‐shell nanosphere can be well controlled through adjusting the level of surfactant used in the polymerization where an average particle diameter of below 100 nm was readily achieved. The surfactant was removed via a dialysis operation after polymerization. Egg lecithin vesicles (liposome) were prepared to mimic the membrane of a cell and to receive the released pyrene from the nanosphere carriers. The in vitro release profiles of pyrene toward different pH liposome vesicles were recorded as a function of time at 37 °C. It was found that release of pyrene from the core‐shell polymer matrix can be triggered by a change in the environmental pH. In particular the pyrene‐loaded nanospheres are capable of responding to a narrow window of pH change from pH = 5, 6, to 7 and can achieve a significant pyrene release of above 80% within 90 h. The rate of release increased with a decrease in pH. A first‐order kinetic model was proposed to describe the rate of release with respect to the concentration of pyrene in the polymer matrix. The first‐order rate constant of release k was thus determined as 0.049 h?1 for pH = 5; 0.043 h?1 for pH = 6; and 0.035 h?1 for pH = 7 at 37 °C. The release of pyrene was considered to follow a diffusion‐controlled mechanism. The synthesis and encapsulation process developed herein provides a new approach to prepare smart nanoparticles for efficient delivery of hydrophobic drugs. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4440–4450  相似文献   

14.
Chemo-photothermal treatment is one of the most efficient strategies for cancer therapy. However, traditional drug carriers without near-infrared absorption capacity need to be loaded with materials behaving photothermal properties, as it results in complicated synthesis process, inefficient photothermal effects and hindered NIR-mediated drug release. Herein we report a facile synthesis of a polyethylene glycol (PEG) linked liposome (PEG-liposomes) coated doxorubicin (DOX)-loaded ordered mesoporous carbon (OMC) nanocomponents (PEG-LIP@OMC/DOX) by simply sonicating DOX and OMC in PEG-liposomes suspensions. The as-obtained PEG-LIP@OMC/DOX exhibits a nanoscale size (600±15 nm), a negative surface potential (-36.70 mV), high drug loading (131.590 mg/g OMC), and excellent photothermal properties. The PEG-LIP@OMC/DOX can deliver loaded DOX to human MCF-7 breast cancer cells (MCF-7) and the cell toxicity viability shows that DOX unloaded PEG-LIP@OMC has no cytotoxicity, confirming the PEG-LIP@OMC itself has excellent biocompatibility. The NIR-triggered release studies demonstrate that this NIR-responsive drug delivery system enables on-demand drug release. Furthermore, cell viability results using human MCF-7 cells demonstrated that the combination of NIR-based hyperthermal therapy and triggered chemotherapy can provide higher therapeutic efficacy than respective monotherapies. With these excellent features, we believe that this phospholipid coating based multifunctional delivery system strategy should promote the application of OMC in nanomedical applications.  相似文献   

15.
SBA-15负载纳米CoMoO4催化剂催化丙烷氧化脱氢制丙烯   总被引:1,自引:0,他引:1  
采用柠檬酸配位-浸渍法制备不同CoMoO4含量的系列CoMoO4/SBA-15催化剂, 通过X射线衍射、透射电镜和低温N2吸附法对样品进行了表征. 结果表明, 柠檬酸配位-浸渍法可在介孔分子筛孔道中形成高含量、均匀分散且有确定晶相的CoMoO4, 同时能够很好地保持载体的介孔结构. 与非负载的CoMoO4相比, 由柠檬酸配位-浸渍法制备的CoMoO4/SBA-15催化剂在丙烷氧化脱氢反应中具有更好的催化活性, 当CoMoO4的含量为13%(w)、反应温度为823 K时, 丙烯产率达到16.8%.  相似文献   

16.
Nanostructured cobalt molybdate catalysts supported on mesoporous silica SBA-15 with different loadings were prepared by citric acid coordination-impregnation method and characterized by XRD, TEM, and BET techniques. The characterization results showed that high loading of well-dispersed crystalline CoMoO4 may be achieved using citric acid coordination-impregnation method and the mesoporous structure of the support remained intact. The catalytic activity of these catalysts in the oxidative dehydrogenation of propane was investigated. The catalysts of nanostructured cobalt molybdate supported on mesoporous silica SBA-15 showed better catalytic performance than the corresponding bulk composite oxide and nanostructured CoMoO4 supported on SBA-15 with loading of 13% (mass fraction, w) displayed propene yield of 16.8% at 823 K.  相似文献   

17.
The conjugation of PAMAM dendrimer and folic acid is a well‐studied multivalent targeted drug delivery system, but it is expensive and difficult to be synthesized. To construct an inexpensive and well‐defined multivalent targeted drug delivery system, a cheap carrier — Boltorn® series hyperbranched aliphatic polyester — was proposed as the nanodevice to carry fluorescein, folic acid, and methotrexate. The construction follows a facile route: (1) synthesizing the carrier — a hybrid hyperbranched polymer with acyclic hydroxyls and cyclic carbonate, (2) linking fluorescein to the hyperbranched polymer via the acyclic hydroxyls, (3) opening the ring of the cyclic carbonate with the amino group of folic acid, and (4) attaching the drug methotrexate to the resulting hydroxyls by ring‐opening reaction. In this route, the peripheral hydroxyls of the hyperbranched polymer are divided into two groups and reacted with three reagents in sequence to form the desired multivalent targeted drug delivery system. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Monodisperse hollow carbon nanocapsules (<200 nm) with mesoporous shells were synthesized by coating their outer shells with silica to prevent aggregation during their high‐temperature annealing. Monodispersed silica nanoparticles were used as starting materials and octadecyltrimethoxysilane (C18TMS) was used as a carbon source to create core–shell nanostructures. These core–shell nanoparticles were coated with silica on their outer shell to form a second shell layer. This outer silica shell prevented aggregation during calcination. The samples were characterized by TEM, SEM, dynamic light scattering (DLS), UV/Vis spectroscopy, and by using the Brunauer–Emmett–Teller (BET) method. The as‐synthesized hollow carbon nanoparticles exhibited a high surface area (1123 m2 g?1) and formed stable dispersions in water after the pegylation process. The drug‐loading and drug‐release properties of these hollow carbon nanocapsules were also investigated.  相似文献   

19.
Conventional chemotherapy suffers lack of multidrug resistance (MDR), lack of bioavailability, and selectivity. Nano‐sized drug delivery systems (DDS) are developing aimed to solve several limitations of conventional DDS. These systems have been offered for targeting tumor tissue owing to enhanced long circulation time, drug solubility, their retention effect, and improved permeability. As a result, the aim of this project was the design and development of DDS for biomedical applications. For this purpose, gold nanospheres (GNSs) covered by pH‐sensitive thiol‐ended triblock copolymer [poly(methacrylic acid) ‐b‐poly(acrylamide) ‐b‐poly(ε‐caprolactone)‐SH; PMAA‐b‐PAM‐b‐PCL‐SH] for delivery of anticancer drug doxorubicin (DOX). The chemical structures of triblock copolymer were investigated by proton nuclear magnetic resonance (1H NMR) and Fourier transform infrared (FTIR) spectroscopies. 1H NMR spectroscopy and gel permeation chromatography (GPC) were used for calculating the molecular weights of each part in the nanocarrier. The success of coating, GNSs with triblock copolymer was considered by means of dynamic light scattering (DLS), FTIR, ultraviolet‐visible (UV‐Vis), and transmission electron microscopy (TEM) measurement. The pH‐responsive drug release ability, (DOX)‐loading capacity, biocompatibility, and in vitro cytotoxicity effects of the nanocarriers were also studied. As a result, it is expected that the synthesized GNSs@polymer‐DOX considered as a potential application in nanomedicine demand like smart drug delivery, imaging, and chemo‐photothermal therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号