首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new megastigmane palmitate, 9‐oxomegastigm‐5(13)‐ene‐2β‐palmitate ( 1 ), and a new oleanane triterpenoid, (3β)‐3,23,28‐trihydroxyolean‐12‐en‐11‐one ( 2 ), together with three known oleanane‐type triterpenoids, β‐amyrin ( 3 ), erythrodiol ( 4 ), and (3β)‐olean‐12‐ene‐3,23,28‐triol ( 5 ), were isolated from the aerial parts of Aster yomena (Asteraceae). Their structures were identified based on 1D‐ and 2D‐NMR analysis, including 1H,1H‐COSY, HSQC, HMBC, and NOESY techniques.  相似文献   

2.
A new diterpene, (7α,11β,14β,16R)‐7,11,14‐trihydroxy‐ent‐kaur‐15‐one ( 1 ), and a new sesquiterpene, polyanthuslide ( 2 ), were isolated from the Chinese liverwort Chiloscyphus polyanthus. Their structures were determined on the basis of extensive spectroscopic analyses, and the configuration of 2 was established by X‐ray crystallographic analysis.  相似文献   

3.
Two new steroidal alkaloids, neoverapatuline ( 1 ) and (1β,3α,5β)‐1,3‐dihydroxyjervanin‐12‐en‐11‐one ( 2 ), together with the four known compounds, veratramine ( 3 ), rubijervine ( 4 ), veratrosine ( 5 ), and veratroylzygadenine ( 6 ), were isolated from the roots and rhizomes of Veratrum nigrum L. Their structures were established through combined analyses of physicochemical properties and spectroscopic evidence. All compounds 1 – 6 were tested for their cytotoxicities in vitro against the human glioma cell line SF188.  相似文献   

4.
Two novel sesquiterpene polyol esters with a dihydro‐β‐agarofuran (=(3R,5aS,9R,9aS)‐octahydro‐2,2,5a,9‐tetramethyl‐2H‐3,9a‐methano‐1‐benzoxepin) skeleton, (1α,2α,4β,8α,9α)‐1,2,8,12‐tetrakis(acetyloxy)‐9‐(furoyloxy)‐4‐hydroxydihydro‐β‐agarofuran ( 1 ) and (1α,2α,6β,8α,9α)‐1,2,6,8,12‐pentakis(acetyloxy)‐9‐(benzoyloxy)dihydro‐β‐agarofuran ( 2 ), and the three known compounds (1α,2α,4β,6β,8α,9β)‐1,2,6‐tris(acetyloxy)‐9‐(benzoyloxy)‐4‐hydroxy‐8,12‐bis(isobutyryloxy)dihydro‐β‐agarofuran ( 3 ), (1α, 2α,4β,6β,8α,9β)‐1,2,6,8‐tetrakis(acetyloxy)‐9‐(furoyloxy)‐4‐hydroxy‐12‐isobutyryloxy)dihydro‐β‐agarofuran ( 4 ), and (1α,2α,4β,6β,8α,9β)‐1,2,6‐tris(acetyloxy)‐9‐(benzoyloxy)‐4‐hydroxy‐8‐(isobutyryloxy)‐12‐[(2‐methylbutanoyl)oxy]dihydro‐β‐agarofuran ( 5 ) were isolated from the root bark of Celastrus angulatus. Their chemical structures were elucidated by analyses of their MS and NMR data.  相似文献   

5.
Chemical investigation of the MeOH extract of the leaves of Gynura procumbens (Lour .) Merr . afforded one new sesquiterpenoid, muurol‐4‐ene‐1β,3β,10β‐triol ( 1 ), and two sesquiterpene glycosides, muurol‐4‐ene‐1β,3β,10β‐triol 3‐Oβ‐D ‐glucopyranoside ( 2 ) and muurol‐4‐ene‐1β,3β,15‐triol 3‐Oβ‐D ‐glucopyranoside ( 3 ), together with three known sesquiterpenoids. Their structures were elucidated on the basis of spectroscopic analyses and chemical methods.  相似文献   

6.
Chemical investigation of the aerial parts of Senecio polypodioides lead to the isolation of the new eudesmanoid 1β‐angeloyloxyeudesm‐7‐ene‐4β,9α‐diol ( 1 ) and the known dirhamnosyl flavonoid lespidin ( 3 ), while from roots, the known 7β‐angeloyloxy‐1‐methylene‐8α‐pyrrolizidine ( 5 ) and sarracine N‐oxide ( 6 ), as well as the new neosarracine N‐oxide ( 8 ), were obtained. The structure of 1 and 8 was elucidated by spectral means. Complete assignments of the 1H NMR data for 5 , 6 , sarracine ( 7 ), and 8 were made using one‐dimensional and two‐dimensional NMR experiments and by application of the iterative full spin analysis of the PERCH NMR software. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
The triterpene ester (3β)‐olean‐18‐en‐3‐yl stearate ( 1 ), together with (3β)‐urs‐12‐en‐3‐yl stearate ( 2 ), and (3β)‐lup‐20(29)‐en‐3‐yl stearate ( 3 ) were isolated from leaves of Maytenus salicifolia Reissek (Celastraceae). The structure of 1 , a new compound, including its configuration, was established by 1H, 13C, and DEPT‐135 NMR data, including 2D experiments (HSQC, HMBC, COSY, and NOESY). The molecular mass (692 Da) was confirmed by gas chromatography coupled with mass spectrometry (CG/MS).  相似文献   

8.
The classical synthesis, followed by purification of the steroidal A‐ring Δ1‐olefin, 5α‐androst‐1‐en‐17‐one ( 5 ), from the Δ1‐3‐keto enone, (5α,17β)‐3‐oxo‐5‐androst‐1‐en‐17‐yl acetate ( 1 ), through a strategy involving the reaction of Δ1‐3‐hydroxy allylic alcohol, 3β‐hydroxy‐5α‐androst‐1‐en‐17β‐yl acetate ( 2 ), with SOCl2, was revisited in order to prepare and biologically evaluate 5 as aromatase inhibitor for breast cancer treatment. Surprisingly, the followed strategy also afforded the isomeric Δ2‐olefin 6 as a by‐product, which could only be detected on the basis of NMR analysis. Optimization of the purification and detection procedures allowed us to reach 96% purity required for biological assays of compound 5 . The same synthetic strategy was applied, using the Δ4‐3‐keto enone, 3‐oxoandrost‐4‐en‐17β‐yl acetate ( 8 ), as starting material, to prepare the potent aromatase inhibitor Δ4‐olefin, androst‐4‐en‐17‐one ( 15 ). Unexpectedly, a different aromatase inhibitor, the Δ3,5‐diene, androst‐3,5‐dien‐17‐one ( 12 ), was formed. To overcome this drawback, another strategy was developed for the preparation of 15 from 8 . The data now presented show the unequal reactivity of the two steroidal A‐ring Δ1‐ and Δ4‐3‐hydroxy allylic alcohol intermediates, 3β‐hydroxy‐5α‐androst‐1‐en‐17β‐yl acetate ( 2 ) and 3β‐hydroxyandrost‐4‐en‐17β‐yl acetate ( 9 ), towards SOCl2, and provides a new strategy for the preparation of the aromatase inhibitor 12 . Additionally, a new pathway to prepare compound 15 was achieved, which avoids the formation of undesirable by‐products.  相似文献   

9.
Conformational features of α,β‐disubstituted β2,3‐dipeptide models have been studied with quantum mechanics method. Geometries were optimized with the HF/6‐31G** method, and energies were evaluated with the B3LYP/6‐31G** method. Solvent effect was evaluated with the SCIPCM method. For (2S,3S)‐β2,3‐dipeptide model 1 , a six‐membered‐ring hydrogen bonded structure is most stable. However, the conformation corresponding to the formation of the 14‐helix is only about 1.7 kcal/mol less stable in methanol solution, indicating that the 14‐helix is favored if a (2S,3S)‐β2,3‐polypeptide contains more than 5 residues. On the other hand, the conformation corresponding to the formation of β‐sheet is most stable for (2R,3S)‐β2,3‐dipeptide model 2 , suggesting that this type of β‐peptides is intrinsically favored for the formation of β‐sheet secondary structure.  相似文献   

10.
Phenanthrene derivatives were prepared by reacting an α,α‐dicyanoolefin with different α,β‐unsaturated carbonyl compounds resulting from Wittig reaction of ninhydrin and phosphanylidene or condensation of barbituric acid and an aldehyde. The easy procedure, mild and metal‐catalyst free, reaction conditions, good yields, and no need for chromatographic purifications are important features of this protocol. The structures of the product of type 3 and 5 were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS). A plausible mechanism for this type of reaction is proposed (Scheme 1).  相似文献   

11.
A new diterpenoid, 12β,13α‐dihydroxytriptonide, was obtained from the transformed culture of triptonide by Catharanthus roseus cell suspension cultures. The complete 1H and 13C NMR assignments of the compound were carried out by using DEPT, COSY, HSQC, g‐HMBC and NOESY techniques. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
Three new withanolide compounds named baimantuoluoline A ( 1 ), B ( 2 ), and C ( 3 ) and the two known withanolides withafastuosin E ( 4 ) and withametelin C ( 5 ) were isolated from the fraction exhibiting activity for psoriasis in the flower of Datura metel L. The three new structures were determined as (5α,6α,7α,12β,15β,22R)‐6,7‐epoxy‐5,12,15‐trihydroxy‐1‐oxowitha‐2,24‐dienolide ( 1 ), (5α,6β,15β,22R)‐ 5,6,15,21‐tetrahydroxy‐1‐oxowith‐24‐enolide ( 2 ), and (5α,6β,12β,22R)‐5,6,12,21‐tetrahydroxy‐27‐methoxy‐1‐oxowitha‐2,24‐dienolide ( 3 ) on the basis of extensive spectroscopic data (HR‐ESI‐MS, 1H‐ and 13C‐NMR, 1H,1H‐COSY, HSQC, HMBC, and NOESY) (withanolide=22‐hydroxyergostan‐26‐oic acid δ‐lactone).  相似文献   

13.
Twelve peptides, 1 – 12 , have been synthesized, which consist of alternating sequences of α‐ and β‐amino acid residues carrying either proteinogenic side chains or geminal dimethyl groups (Aib). Two peptides, 13 and 14 , containing 2‐methyl‐3‐aminobutanoic acid residues or a ‘random mix’ of α‐, β2‐, and β3‐amino acid moieties were also prepared. The new compounds were fully characterized by CD (Figs. 1 and 2), and 1H‐ and 13C‐NMR spectroscopy, and high‐resolution mass spectrometry (HR‐MS). In two cases, 3 and 14 , we discovered novel types of turn structures with nine‐ and ten‐membered H‐bonded rings forming the actual turns. In two other cases, 8 and 11 , we found 14/15‐helices, which had been previously disclosed in mixed α/β‐peptides containing unusual β‐amino acids with non‐proteinogenic side chains. The helices are formed by peptides containing the amino acid moiety Aib in every other position, and their backbones are primarily not held together by H‐bonds, but by the intrinsic conformations of the containing amino acid building blocks. The structures offer new possibilities of mimicking peptide–protein and protein–protein interactions (PPI).  相似文献   

14.
Bridging between (i)‐ and (i+3)‐positions in a β3‐peptide with a tether of appropriate length is expected to prevent the corresponding 314‐helix from unfolding (Fig. 1). The β3‐peptide H‐β3hVal‐β3hLys‐β3hSer(All)‐β3hPhe‐β3hGlu‐β3hSer(All)‐β3hTyr‐β3hIle‐OH ( 1 ; with allylated βhSer residues in 3‐ and 6‐position), and three tethered β‐peptides 2 – 4 (related to 1 through ring‐closing metathesis) have been synthesized (solid‐phase coupling, Fmoc strategy, on chlorotrityl resin; Scheme). A comparative CD analysis of the tethered β‐peptide 4 and its non‐tethered analogue 1 suggests that helical propensity is significantly enhanced (threefold CD intensity) by a (CH2)4 linker between the β3hSer side chains (Fig. 2). This conclusion is based on the premise that the intensity of the negative Cotton effect near 215 nm in the CD spectra of β3‐peptides represents a measure of ‘helical content’. An NMR analysis in CD3OH of the two β3‐octapeptide derivatives without (i.e., 1 ) and with tether (i.e., 4 ; Tables 1–6, and Figs. 4 and 5) provided structures of a degree of precision (by including the complete set of side chain–side chain and side chain–backbone NOEs) which is unrivaled in β‐peptide NMR‐solution‐structure determination. Comparison of the two structures (Fig. 5) reveals small differences in side‐chain arrangements (separate bundles of the ten lowest‐energy structures of 1 and 4 , Fig. 5, A and B ) with little deviation between the two backbones (superposition of all structures of 1 and 4 , Fig. 5, C ). Thus, the incorporation of a CH2? O? (CH2)4? O? CH2 linker between the backbone of the β3‐amino acids in 3‐ and 6‐position (as in 4 ) does accurately constrain the peptide into a 314‐helix. The NMR analysis, however, does not suggest an increase in the population of a 314‐helical backbone conformation by this linkage. Possible reasons for the discrepancy between the conclusion from the CD spectra and from the NMR analysis are discussed.  相似文献   

15.
The structures of iminium salts formed from diarylprolinol or imidazolidinone derivatives and α,β‐unsaturated aldehydes have been studied by X‐ray powder diffraction (Fig. 1), single‐crystal X‐ray analyses (Table 1), NMR spectroscopy (Tables 2 and 3, Figs. 2–7), and DFT calculations (Helv. Chim. Acta 2009 , 92, 1, 1225, 2010 , 93, 1; Angew. Chem., Int. Ed. 2009 , 48, 3065). Almost all iminium salts of this type exist in solution as diastereoisomeric mixtures with (E)‐ and (Z)‐configured +NC bond geometries. In this study, (E)/(Z) ratios ranging from 88 : 12 up to 98 : 2 (Tables 2 and 3) and (E)/(Z) interconversions (Figs. 2–7) were observed. Furthermore, the relative rates, at which the (E)‐ and (Z)‐isomers are formed from ammonium salts and α,β‐unsaturated aldehydes, were found to differ from the (E)/(Z) equilibrium ratio in at least two cases (Figs. 4 and 5, a, and Fig. 6, a); more (Z)‐isomer is formed kinetically than corresponding to its equilibrium fraction. Given that the enantiomeric product ratios observed in reactions mediated by organocatalysts of this type are often ≥99 : 1, the (E)‐iminium‐ion intermediates are proposed to react with nucleophiles faster than the (Z)‐isomers (Scheme 5 and Fig. 8). Possible reasons for the higher reactivity of (E)‐iminium ions (Figs. 8 and 9) and for the kinetic preference of (Z)‐iminium‐ion formation are discussed (Scheme 4). The results of related density functional theory (DFT) calculations are also reported (Figs. 10–13 and Table 4).  相似文献   

16.
β‐Diimine zinc dichloride complexes [CH2{C(Me)NAr}2]ZnCl2 [Ar = Mes ( 1 ), Dipp ( 2 )] were obtained from the reactions of ZnCl2 with the corresponding β‐iminoamines [ArN(H)C(Me)CHC(Me)NAr]. Complexes 1 and 2 were characterized by multinuclear NMR (1H, 13C) and IR spectroscopy, elemental analyses as well as by single‐crystal X‐ray diffraction. The energy differences between the enamine‐imine tautomers of the β‐iminoamines were quantified by quantum chemical calculations.  相似文献   

17.
Three new lanostane‐type triterpenoids, inonotsutriols A ( 1 ), B ( 2 ), and C ( 3 ) were isolated from the sclerotia of Inonotus obliquus (Pers .: Fr.) (Japanese name: kabanoanatake; Russian name: chaga). Their structures were determined to be (3β,21R,24S)‐21,24‐cyclolanost‐8‐ene‐3,21,25‐triol ( 1 ), (3β,21R,24R)‐21,24‐cyclolanost‐8‐ene‐3,21,25‐triol ( 2 ), and (3β,21R,24S)‐21,24‐cyclolanosta‐7,9(11)‐diene‐3,21,25‐triol ( 3 ) on the basis of NMR spectroscopy including 1D and 2D experiments (1H,1H‐COSY, NOESY, HMQC, and HMBC) and EI‐MS.  相似文献   

18.
The preparation of (2S,3S)‐ and (2R,3S)‐2‐fluoro and of (3S)‐2,2‐difluoro‐3‐amino carboxylic acid derivatives, 1 – 3 , from alanine, valine, leucine, threonine, and β3h‐alanine (Schemes 1 and 2, Table) is described. The stereochemical course of (diethylamino)sulfur trifluoride (DAST) reactions with N,N‐dibenzyl‐2‐amino‐3‐hydroxy and 3‐amino‐2‐hydroxy carboxylic acid esters is discussed (Fig. 1). The fluoro‐β‐amino acid residues have been incorporated into pyrimidinones ( 11 – 13 ; Fig. 2) and into cyclic β‐tri‐ and β‐tetrapeptides 17 – 19 and 21 – 23 (Scheme 3) with rigid skeletons, so that reliable structural data (bond lengths, bond angles, and Karplus parameters) can be obtained. β‐Hexapeptides Boc[(2S)‐β3hXaa(αF)]6OBn and Boc[β3hXaa(α,αF2)]6‐OBn, 24 – 26 , with the side chains of Ala, Val, and Leu, have been synthesized (Scheme 4), and their CD spectra (Fig. 3) are discussed. Most compounds and many intermediates are fully characterized by IR‐ and 1H‐, 13C‐ and 19F‐NMR spectroscopy, by MS spectrometry, and by elemental analyses, [α]D and melting‐point values.  相似文献   

19.
Binary and ternary systems composed of dapsone, sulfobutylether‐β‐cyclodextrin (SBE‐β‐CD), β‐CD and egg phosphatidylcholine (EPC) were evaluated using 1D ROESY, saturation transfer difference NMR and diffusion experiments (DOSY) revealing the binary complexes Dap/β‐CD (Ka 1396 l mol?1), Dap/SBE‐β‐CD (Ka 246 l mol?1), Dap/EPC (Ka 84 l mol?1) and the ternary complex Dap/β‐CD/EPC (Ka 18 l mol?1) in which dapsone is more soluble. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Three new monoterpenoid indole alkaloids, (14α,15α)‐14,15‐epoxyaspidofractinine ( 1 ) and maireines A and B ( 2 and 3 , resp.), together with 19 known alkaloids, were isolated from the leaves and twigs of Alstonia mairei. The structures of the new compounds were elucidated by 1D‐ and 2D‐NMR spectroscopic methods in combination with MS experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号