首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel triazene, 4‐[(E)‐2‐(4‐cyanophenyl)diazenyl]‐morpholine ( 1 ) was prepared via a diazonium ion coupling reaction between 4‐aminobenzonitrile and morpholine. The x‐ray structure of 1 was determined and evidenced π delocalization in the triazene subunit. The room temperature absorption spectrum of 1 in acetonitrile was dominated by an intense triazene‐centered π→π* transition at 325 nm. Compound 1 was observed to be luminescent, with an emission maximum at 434 nm in room temperature acetonitrile solution. The emission spectrum of 1 in propionitrile glass at 77K exhibited a narrowed emission band with a maximum at 449 nm. Broad emission from 400–700 nm with poorly resolved vibrational structure was observed from solid 1 at room temperature. J. Heterocyclic Chem., 2011.  相似文献   

2.
A series of statistical copolymers (poly[(9,9‐di‐n‐hexylfluorene)‐co‐2‐{2,6‐bis‐[2‐(4‐diphenylaminophenyl)vinyl]pyran‐4‐ylidene}malononitrile) were synthesized by the Suzuki coupling reaction. The copolymers showed absorption bands at 379 and 483–489 nm, which were attributed to the oligofluorene segments and the segments containing 2‐[2,6‐bis(2‐{4‐[(4‐bromophenyl)phenylamino]phenyl}vinyl)pyran‐4‐ylidene]malononitrile ( 3 ), respectively. The absorption band around 483–489 nm increased with the feed ratio of 3 . The photoluminescence (PL) spectra of the copolymers showed emission bands at 420 and 573–620 nm. As the feed ratio of 3 increased, the PL emission in the longer wavelength region redshifted, and the intensity increased as well. The electroluminescence (EL) spectrum of the copolymers showed a very weak emission at 420 nm. The PL and EL emission colors redshifted dramatically with the increase in the feed ratio of 3 . The highest occupied molecular orbital and lowest unoccupied molecular orbital levels of the model compound (2‐{2,6‐bis[2‐(4‐diphenylaminophenyl)vinyl]pyran‐4‐ylidene}malononitrile) were determined to be ?5.34 and ?3.14 eV, respectively. It was concluded that energy transfer took place from the oligofluorene blocks to the segments containing 3 and that direct charge trapping occurred in the segments containing 3 during the EL operation. The Commission Internationale de l'Eclairage (CIE) chromaticity coordinates of the copolymer (x = 0.63, y = 0.37) containing 10 mol % 3 were very close to those (x = 0.67, y = 0.33) for National Television System Committee (NTSC) red with a maximum photometric power efficiency of 0.27 cd/A. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3729–3737, 2006  相似文献   

3.
Eleven novel 5‐methyl‐2‐[(un)substituted phenyl]‐4‐{4,5‐dihydro‐3‐[(un)substituted phenyl]‐5‐(1,2,3,4‐tetrahydroisoquinoline‐2‐yl)pyrazol‐1‐yl}‐oxazole derivatives were synthesized and characterized by elemental analysis, ESI‐MS, 1H NMR and 13C NMR. All of the compounds have been screened for their antiproliferative activities against PC‐3 cell (human prostate cancer) and A431 cell (human epidermoid carcinoma cancer) lines in vitro. The results revealed that compounds 4g , 4j and 4k exhibited the strong inhibitory activities against the PC‐3 cell lines (with IC50 values of 2.8±0.11, 3.1±0.10 and 3.0±0.06 μg/mL, respectively).  相似文献   

4.
Sulfonamide‐derived new ligands, 4‐({[(E)‐(5‐bromo‐2‐hydroxyphenyl)methylidene]‐amino}methyl)benzenesulfonamide and 4‐bromo‐2‐((E)‐{4‐[(3,4‐dimethylisoxazol‐5‐yl)sulfamoyl]phenyl}iminiomethyl)phenolate and their transition metal [cobalt(II), copper(II), nickel(II) and zinc(II)] complexes were synthesized and characterized. The nature of bonding and structure of all the synthesized compounds were deduced from physical (magnetic susceptibility and conductivity measurements), spectral (IR, 1H and 13C NMR, electronic, mass spectrometry) and analytical (CHN analysis) data. The structure of the ligand, 4‐bromo‐2‐((E)‐{4‐[(3,4‐dimethylisoxazol‐5‐yl)sulfamoyl]phenyl} iminiomethyl)phenolate was also determined by X‐ray diffraction method. An octahedral geometry was suggested for all the complexes. In order to evaluate the biological activity of the ligands and the effect of metals, the ligands and their metal complexes were screened for in vitro antibacterial, antifungal and cytotoxic activity. The results of these studies revealed that all compounds showed moderate to significant antibacterial activity against one or more bacterial strains and good antifungal activity against various fungal strains. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
A series of tributyltin(IV) complexes of 2‐[(E)‐2‐(3‐formyl‐4‐hydroxyphenyl)‐1‐diazenyl]benzoic acid and 4‐[((E)‐1‐{2‐hydroxy‐5‐[(E)‐2‐(2‐carboxyphenyl)‐1‐diazenyl]phenyl}methylidene)amino]aryls have been investigated by electrospray mass spectrometry (ESI‐MS) and tandem mass spectrometry (MSn) techniques. The assignments are facilitated by agreement between observed and calculated isotopic patterns and MSn studies. Single‐crystal X‐ray crystallography of (Bu3Sn[O2CC6H4{N?N(C6H3‐4‐OH(C(H)?NC6H4OCH3‐4))}‐o])n reveals a polymeric structure. Toxicity studies of the tributyltin(IV) complexes of the 4‐[((E)‐1‐{2‐hydroxy‐5‐[(E)‐2‐(2‐carboxyphenyl)‐1‐diazenyl]phenyl}methylidene)amino]aryls on the second larval instar of the Aedes aegypti and Anopheles stephensi mosquito larvae are also reported. The LC50 values indicate that the complexes are effective larvicides, which range from a low of 0.36 ppm to a high of 0.69 ppm against the Ae. aegypti larvae and between 0.82 and 1.17 ppm against the An. stephensi larvae. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
The new asymmetrical organic ligand 2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole ( L , C17H13N5O), containing pyridine and imidazole terminal groups, as well as potential oxdiazole coordination sites, was designed and synthesized. The coordination chemistry of L with soft AgI, CuI and CdII metal ions was investigated and three new coordination polymers (CPs), namely, catena‐poly[[silver(I)‐μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole] hexafluoridophosphate], {[Ag( L )]PF6}n, catena‐poly[[copper(I)‐di‐μ‐iodido‐copper(I)‐bis(μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole)] 1,4‐dioxane monosolvate], {[Cu2I2( L )2]·C4H8O2}n, and catena‐poly[[[dinitratocopper(II)]‐bis(μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole)]–methanol–water (1/1/0.65)], {[Cd( L )2(NO3)2]·2CH4O·0.65H2O}n, were obtained. The experimental results show that ligand L coordinates easily with linear AgI, tetrahedral CuI and octahedral CdII metal atoms to form one‐dimensional polymeric structures. The intermediate oxadiazole ring does not participate in the coordination interactions with the metal ions. In all three CPs, weak π–π interactions between the nearly coplanar pyridine, oxadiazole and benzene rings play an important role in the packing of the polymeric chains.  相似文献   

7.
A platinum complex with the 6‐(7‐benzothiazol‐2′‐yl‐9,9‐diethyl‐9H‐fluoren‐2‐yl)‐2,2′‐bipyridinyl ligand ( 1 ) was synthesized and the crystal structure was determined. UV/Vis absorption, emission, and transient difference absorption of 1 were systematically investigated. DFT calculations were carried out on 1 to characterize the electronic ground state and aid in the understanding of the nature of low‐lying excited electronic states. Complex 1 exhibits intense structured 1π–π* absorption at λabs<440 nm, and a broad, moderate 1M LCT/1LLCT transition at 440–520 nm in CH2Cl2 solution. A structured 3ππ*/3M LCT emission at about 590 nm was observed at room temperature and at 77 K. Complex 1 exhibits both singlet and triplet excited‐state absorption from 450 nm to 750 nm, which are tentatively attributed to the 1π–π* and 3π–π* excited states of the 6‐(7‐benzothiazol‐2′‐yl‐9,9‐diethyl‐9H‐fluoren‐2‐yl)‐2,2′‐bipyridine ligand, respectively. Z‐scan experiments were conducted by using ns and ps pulses at 532 nm, and ps pulses at a variety of visible and near‐IR wavelengths. The experimental data were fitted by a five‐level model by using the excited‐state parameters obtained from the photophysical study to deduce the effective singlet and triplet excited‐state absorption cross sections in the visible spectral region and the effective two‐photon absorption cross sections in the near‐IR region. Our results demonstrate that 1 possesses large ratios of excited‐state absorption cross sections relative to that of the ground‐state in the visible spectral region; this results in a remarkable degree of reverse saturable absorption from 1 in CH2Cl2 solution illuminated by ns laser pulses at 532 nm. The two‐photon absorption cross sections in the near‐IR region for 1 are among the largest values reported for platinum complexes. Therefore, 1 is an excellent, broadband, nonlinear absorbing material that exhibits strong reverse saturable absorption in the visible spectral region and large two‐photon‐assisted excited‐state absorption in the near‐IR region.  相似文献   

8.
On the line of a previous work on the spectral properties of some of heteroaryl chalcone, the effect of medium acidity and photoreactivity of 3‐(4‐dimethylamino‐phenyl)‐1‐(2,5‐dimethyl‐thiophen‐3‐yl)‐propenone (DDTP) has been investigated in dimethylformamide and in chloromethane solvents such as methylenechloride, chloroform and carbon tetrachloride. The dye solution (ca. 5×10−4 mol·L−1 in DMF) gives a good laser emission in the range 470–560 nm with emission maximum at 515 nm upon pumping by nitrogen laser (λex=337.1 nm). The laser parameters such as gain coefficient (α), emission cross section (δe) and half life energy (E1/2) at maximum laser emission are also determined.  相似文献   

9.
To find novel lead compounds having high insecticidal activity, a series of phosphorothioate derivatives containing 1,2,3‐triazole and pyridine rings were synthesized by the reaction of 1‐{1‐[(6‐chloropyridin‐3‐yl)methyl]‐5‐methyl‐1H‐1,2,3‐triazol‐4‐yl}ethanone oxime with phosphorochloridothioates. Their structures were confirmed by IR, 1H NMR, 31P NMR, mass spectrometry, and elemental analyses. The structure of 6c was determined by single crystal X‐ray diffraction, which is thermodynamically stable E isomer. The results of preliminary bioassay indicate that some title compounds possess insecticidal activity to some extent. © 2008 Wiley Periodicals, Inc. Heteroatom Chem 19:15–20, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20367  相似文献   

10.
朱小飞  石德清 《中国化学》2009,27(3):565-568
为了寻找高效、低毒的新型农用化学品,以2-氯-5-(氯甲基)噻唑为起始原料,设计合成了一系列新型含1,2,3-三唑和噻唑杂环的肟醚硫代磷酸酯衍生物,采用IR, 1H NMR, 31P NMR, MS和元素分析对其进行了结构表征。初步生物活性测试结果表明:该系列化合物具有中等程度的杀虫和杀菌活性。  相似文献   

11.
Some new derivatives of 3‐chloro‐1‐(4a,10b‐diazaphenanthrene‐2‐yl)‐4‐phenyl azetidin‐2‐one were synthesized through the reaction of N‐{4‐[phenyldiazenyl] phenyl}‐N‐[phenyl methylene] amine with 4‐[phenyldiazenyl] aniline. The resulting 3‐chloro‐4‐phenyl‐1‐{4‐[phenyldiazenyl] phenyl} azetidin‐2‐one intermediate in benzene was irradiated in a Pyrex vessel with 350 nm UV light in a photochemical reactor to give the desired derivatives (4a–j) . Structures of the new compounds were verified on the basis of spectral and elemental methods of analyses. Nine of the prepared compounds were tested for their anti‐inflammatory effects; most of these compounds showed potent and significant results compared with indomethacin.  相似文献   

12.
In this study, three chromophores—p‐nitroaniline, 4‐(4‐nitrophenylazo)aniline, and 4‐[(E)‐2‐{4‐[(E)‐2‐(4‐nitrophenyl)‐1‐diazenyl]phenyl}‐1‐diazenyl]aniline—were intercalated into layered aluminosilicate saponite and then dispersed into the polyurethanes matrix. The intercalated chromophore/saponite complexes were examined by inductively coupled plasma emission and element analysis technologies. The molecular orbital package computation simulation and X‐ray diffraction (XRD) analysis showed that possible configurations of chromophore ions on the gallery surfaces of saponite suggest that the chromophore molecules lie parallel to the basal planes of silicate as an inclined paraffin structure or as pseudo‐multilayers. The XRD and transmission electron microscopy analysis indicated that the delamination of organoclay in the polyurethanes matrix exhibited nanolayers, exfoliated structure, or both. In particular, even at high doping levels up to 15 wt % of organoclay, the [chromophore]+‐saponite/polyurethanes film did not display a macroscopic aggregation of layered silicates and showed high transparency. The thermal stability of chromophore was significantly enhanced as intercalated into the layered aluminosilicate saponite, and the glass‐transition temperature of [chromophore]+‐saponite/polyurethanes nanocomposites proportionally increased with increased clay content. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1690–1703, 2002  相似文献   

13.
A new and convenient method for the preparation of 2‐aryl‐2,3‐dihydro‐1,8‐naphthyridin‐4(1H)‐ones 4 has been developed. Thus, N‐{3‐[(2E)‐3‐arylprop‐2‐enoyl]pyridin‐2‐yl}‐2,2‐dimethylpropanamides 3 are synthesized from commercially available pyridin‐2‐amine using an easily performed three‐step sequence and are subjected to cyclization with deprotection under acidic conditions in H2O to give the desired products. Similarly, 2‐aryl‐2,3‐dihydro‐1,7‐naphthyridin‐4(1H)‐ones 8 and 2‐aryl‐2,3‐dihydro‐1,6‐naphthyridin‐4(1H)‐ones 12 can be prepared from pyridin‐3‐amine and pyridin‐4‐amine, respectively.  相似文献   

14.
As a novel ultraviolet (UV) absorbent with excellent performance in UVA section (320 ~ 400 nm), 2‐{2‐hydroxy‐4‐[(octyloxycarbonyl)ethylideneoxy]phenyl}‐4,6‐Bis(4‐biphenylyl)‐1,3,5‐triazine (CGL‐479) was synthesized in a simple method with a total yield of 45.3% in four steps. Its outstanding UV absorption capability (λmax = 326 nm, εmax = 4.15 × 104 L?mol?1?cm?1), high thermostability [T5 (the temperature of losing 5% in weight) = 385 °C], and compatibility with polymer materials make it a potential substitute of the traditional UV absorbents.  相似文献   

15.
Three new one‐ (1D) and two‐dimensional (2D) CuII coordination polymers, namely poly[[bis{μ2‐4‐amino‐3‐(pyridin‐2‐yl)‐5‐[(pyridin‐3‐ylmethyl)sulfanyl]‐1,2,4‐triazole}copper(II)] bis(methanesulfonate) tetrahydrate], {[Cu(C13H12N5S)2](CH3SO3)2·4H2O}n ( 1 ), catena‐poly[[copper(II)‐bis{μ2‐4‐amino‐3‐(pyridin‐2‐yl)‐5‐[(pyridin‐4‐ylmethyl)sulfanyl]‐1,2,4‐triazole}] dinitrate methanol disolvate], {[Cu(C13H12N5S)2](NO3)2·2CH3OH}n ( 2 ), and catena‐poly[[copper(II)‐bis{μ2‐4‐amino‐3‐(pyridin‐2‐yl)‐5‐[(pyridin‐4‐ylmethyl)sulfanyl]‐1,2,4‐triazole}] bis(perchlorate) monohydrate], {[Cu(C13H12N5S)2](ClO4)2·H2O}n ( 3 ), were obtained from 4‐amino‐3‐(pyridin‐2‐yl)‐5‐[(pyridin‐3‐ylmethyl)sulfanyl]‐1,2,4‐triazole with pyridin‐3‐yl terminal groups and from 4‐amino‐3‐(pyridin‐2‐yl)‐5‐[(pyridin‐4‐ylmethyl)sulfanyl]‐1,2,4‐triazole with pyridin‐4‐yl terminal groups. Compound 1 displays a 2D net‐like structure. The 2D layers are further linked through hydrogen bonds between methanesulfonate anions and amino groups on the framework and guest H2O molecules in the lattice to form a three‐dimensional (3D) structure. Compound 2 and 3 exhibit 1D chain structures, in which the complicated hydrogen‐bonding interactions play an important role in the formation of the 3D network. These experimental results indicate that the coordination orientation of the heteroatoms on the ligands has a great influence on the polymeric structures. Moreover, the selection of different counter‐anions, together with the inclusion of different guest solvent molecules, would also have a great effect on the hydrogen‐bonding systems in the crystal structures.  相似文献   

16.
Methyl 2‐benzamido‐4‐(3,4‐dimethoxyphenyl)‐5‐methylbenzoate, C24H23NO5, (Ia), and N‐{5‐benzoyl‐2‐[(Z)‐2‐methoxyethenyl]‐4‐methylphenyl}benzamide, C24H21NO3, (IIa), were formed via a Diels–Alder reaction of appropriately substituted 2H‐pyran‐2‐ones and methyl propiolate or (Z)‐1‐methoxybut‐1‐en‐3‐yne, respectively. Each of these cycloadditions might yield two different regioisomers, but just one was obtained in each case. In (Ia), an intramolecular N—H...O hydrogen bond closes a six‐membered ring. A chain is formed due to aromatic π–π interactions, and a three‐dimensional framework structure is formed by a combination of C—H...O and C—H...π(arene) hydrogen bonds. Compound (IIa) was formed not only regioselectively but also chemoselectively, with just the triple bond reacting and the double bond remaining unchanged. Compound (IIa) crystallizes as N—H...O hydrogen‐bonded dimers stabilized by aromatic π–π interactions. Dimers of (IIa) are connected into a chain by weak C—H...π(arene) interactions.  相似文献   

17.
A positive working photosensitive polymer based on poly(2,6‐dihydroxy‐1,5‐naphthylene) (PDHN) with 1‐(1,1‐bis{4‐[2‐diazo‐1(2H)naphthalene‐5‐sulfonyloxy]phenyl}ethyl)‐4‐(1‐{4‐[2‐diazo‐1(2H)naphthalene‐5‐sulfonyloxy]phenyl}methylethyl) benzene (S‐DNQ) as a photosensitive compound has been developed. PDHN (number‐average molecular weight: 13,000; polydispersity index: 1.9) was prepared by oxidative coupling polymerization of the 2,6‐dihydroxynaphthalene‐benzylamine complex using iron(III) chloride hexahydrate in the solid state. A 10 wt % loss temperature of PDHN was 450 °C in air, and the film of 1 μm thickness showed excellent transparency above 400 nm. The resist system consisting of PDHN and S‐DNQ gave a clear positive pattern when it was exposed to 436 nm of light, followed by development with a 0.50 wt % aqueous tetramethylammonium hydroxide solution at 25 °C. The sensitivity (D) and contrast (γ) were 300 mJ/cm2 and 2.1, respectively. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 393–398, 2002  相似文献   

18.
The synthesis, crystal structure studies and solvatochromic behavior of 2‐{(2E,4E)‐5‐[4‐(dimethylamino)phenyl]penta‐2,4‐dien‐1‐ylidene}malononitrile, C16H15N3 (DCV[3]), and 2‐{(2E,4E,6E)‐7‐[4‐(dimethylamino)phenyl]hepta‐2,4,6‐trien‐1‐ylidene}malononitrile, C18H17N3 (DCV[4]), are reported and discussed in comparison with their homologs having a shorter length of the π‐conjugated bridge. The compounds of this series have potential use as nonlinear materials with second‐order effects due to their donor–acceptor structures. However, DCV[3] and DCV[4] crystallized in the centrosymmetric space group P21/c which excludes their application as nonlinear optical materials in the crystalline state. They both crystallize with two independent molecules having the same molecular conformation in the asymmetric unit. The series DCV[1]–DCV[4] demonstrated reversed solvatochromic behavior in toluene, chloroform, and acetonitrile.  相似文献   

19.
In a course of development and preparation of landiolol (1a), a known ultra‐short‐acting β‐blocker, process quality control by HPLC and LC‐MS analysis consistently showed an impurity peak ranging from 0.05% to 0.15 % and exhibiting a molecular mass m/z 887. To identify the hitherto unknown impurity, we prepared one of the possible landiolol derivatives with the same molecular mass for proper spectral characterization (NMR and MS). Its equivalence with the unknown impurity was then confirmed by LC‐MS analysis. Ultimately, using fragmentation patterns in LC‐MS and selective two‐dimensional NMR experiments, the structure of the impurity was assigned as [(4S)‐2,2‐dimethyl‐1,3‐dioxolan‐4‐yl]methyl 3‐{4‐[(2S)‐2‐hydroxy‐3‐(3‐{4‐[(2S)‐2‐hydroxy‐3‐[(2‐{[(morpholin‐4‐yl)carbonyl]amino}ethyl)amino]propoxy]phenyl}‐N‐(2‐{[(morpholin‐4‐yl)carbonyl]amino}ethyl)propanamido)propoxy]phenyl}propanoate (2). It was found that the impurity was present in two rotameric forms at room temperature. The synthesis and NMR characterization of (2) are discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
The diorganotin(IV) complexes of 5‐[(E)‐2‐aryldiazen‐1‐yl]‐2‐hydroxybenzoic acid are of interest because of their structural diversity in the crystalline state and their interesting biological activity. The structures of dimethylbis{2‐hydroxy‐5‐[(E)‐2‐(4‐methylphenyl)diazen‐1‐yl]benzoato}tin(IV), [Sn(CH3)2(C14H11N2O3)2], and di‐n‐butylbis{2‐hydroxy‐5‐[(E)‐2‐(4‐methylphenyl)diazen‐1‐yl]benzoato}tin(IV) benzene hemisolvate, [Sn(C4H9)2(C14H11N2O3)2]·0.5C6H6, exhibit the usual skew‐trapezoidal bipyramidal coordination geometry observed for related complexes of this class. Each structure has two independent molecules of the SnIV complex in the asymmetric unit. In the dimethyltin structure, intermolecular O—H…O hydrogen bonds and a very weak Sn…O interaction link the independent molecules into dimers. The planar carboxylate ligands lend themselves to π–π stacking interactions and the diversity of supramolecular structural motifs formed by these interactions has been examined in detail for these two structures and four closely related analogues. While there are some recurring basic motifs amongst the observed stacking arrangements, such as dimers and step‐like chains, variations through longitudinal slipping and inversion of the direction of the overlay add complexity. The π–π stacking motifs in the two title complexes are combinations of some of those observed in the other structures and are the most complex of the structures examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号