首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relative‐rate method has been used to determine the rate coefficients for the reactions of OH radicals with three C5 biogenic alcohols, 2‐methyl‐3‐buten‐2‐ol (k1), 3‐methyl‐3‐buten‐1‐ol (k2), and 3‐methyl‐2‐buten‐1‐ol (k3), in the gas phase. OH radicals were produced by the photolysis of CH3ONO in the presence of NO. Di‐n‐butyl ether and propene were used as the reference compounds. The absolute rate coefficients obtained with the two reference compounds agreed well with each other. The O3 and O‐atom reactions with the target alcohols were confirmed to have a negligible contribution to their total losses by using two kinds of light sources with different relative rates of CH3ONO and NO2 photolysis. The absolute rate coefficients were obtained as the weighted mean values for the two reference compound systems and were k1 = (6.6 ± 0.5) × 10?11, k2 = (9.7 ± 0.7) × 10?11, and k3 = (1.5 ± 0.1) × 10?10 cm3 molecule?1 s?1 at 298 ± 2 K and 760 torr of air. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 379–385 2004  相似文献   

2.
Rate coefficients, k1, for the reaction OH + HONO → H2O + NO2, have been measured over the temperature range 298 to 373 K. The OH radicals were produced by 266 nm laser photolysis of O3 in the presence of a large excess of H2O vapor. The temporal profiles of OH were measured under pseudo-first-order conditions, in an excess of HONO, using time resolved laser induced fluorescence. The measured rate coefficient exhibits a slight negative temperature dependence, with k1 = (2.8 ± 1.3) × 10?12 exp((260 ± 140)/T) cm3 molecule?1 s?1. The measured values of k1 are compared with previous determinations and the atmospheric implications of our findings are discussed.  相似文献   

3.
4.
5.
Rate coefficients have been measured for the reaction of OH radicals with methylglyoxal from 260 to 333 K using the discharge flow technique and laser-induced fluorescence detection of OH. The rate coefficient was found to be (1.32±0.30) × 10?11 cm3 molecule?1 s?1 at room temperature, with a distinct negative temperature dependence (E/R of ?830 ± 300 K). These are the first measurements of the temperature dependence of this reaction. The reaction of OH with acetaldehyde was also investigated, and a rate coefficient of (1.45 ± 0.25) × 10?11 cm3 molecule?1 s?1 was found at room temperature, in accord with recent studies. Experiments in which O2 was added to the flow showed regeneration of OH following the reaction of CH3CO radicals with O2. However, chamber experiments at atmospheric pressure using FTIR detection showed no evidence for OH production. FTIR experiments have also been used to investigate the chemistry of the CH3COCO radical formed by hydrogen abstraction from methylglyoxal. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
Using relative rate methods, rate constants for the gas‐phase reactions of OH radicals and Cl atoms with di‐n‐propyl ether, di‐n‐propyl ether‐d14, di‐n‐butyl ether and di‐n‐butyl ether‐d18 have been measured at 296 ± 2 K and atmospheric pressure of air. The rate constants obtained (in cm3 molecule−1 s−1 units) were: OH radical reactions, di‐n‐propyl ether, (2.18 ± 0.17) × 10−11; di‐n‐propyl ether‐d14, (1.13 ± 0.06) × 10−11; di‐n‐butyl ether, (3.30 ± 0.25) × 10−11; and di‐n‐butyl ether‐d18, (1.49 ± 0.12) × 10−11; Cl atom reactions, di‐n‐propyl ether, (3.83 ± 0.05) × 10−10; di‐n‐propyl ether‐d14, (2.84 ± 0.31) × 10−10; di‐n‐butyl ether, (5.15 ± 0.05) × 10−10; and di‐n‐butyl ether‐d18, (4.03 ± 0.06) × 10−10. The rate constants for the di‐n‐propyl ether and di‐n‐butyl ether reactions are in agreement with literature data, and the deuterium isotope effects are consistent with H‐atom abstraction being the rate‐determining steps for both the OH radical and Cl atom reactions. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 425–431, 1999  相似文献   

7.
Rate coefficients for the reactions of OH with n, s, and iso-butanol have been measured over the temperature range 298 to ∼650 K. The rate coefficients display significant curvature over this temperature range and bridge the gap between previous low-temperature measurements with a negative temperature dependence and higher temperature shock tube measurements that have a positive temperature dependence. In combination with literature data, the following parameterizations are recommended: k1,OH + n-butanol(T) = (3.8 ± 10.4) × 10−19T2.48 ± 0.37exp ((840 ± 161)/T) cm3 molecule−1 s−1 k2,OH + s-butanol(T) = (3.5 ± 3.0) × 10−20T2.76 ± 0.12exp ((1085 ± 55)/T) cm3 molecule−1 s−1 k3,OH + i-butanol(T) = (5.1 ± 5.3) × 10−20T2.72 ± 0.14exp ((1059 ± 66)/T) cm3 molecule−1 s−1 k4,OH + t-butanol(T) = (8.8 ± 10.4) × 10−22T3.24 ± 0.15exp ((711 ± 83)/T) cm3 molecule−1 s−1 Comparison of the current data with the higher shock tube measurements suggests that at temperatures of ∼1000 K, the OH yields, primarily from decomposition of β-hydroxyperoxy radicals, are ∼0.3 (n-butanol), ∼0.3 (s-butanol) and ∼0.2 (iso-butanol) with β-hydroxyperoxy decompositions generating OH, and a butene as the main products. The data suggest that decomposition of β-hydroxyperoxy radicals predominantly occurs via OH elimination.  相似文献   

8.
An experimental investigation of the hydroxyl radical initiated gas‐phase photooxidation of 1‐propanol in the presence of NO was carried out in a reaction chamber using gas chromatography mass spectrometry. The products identified in the OH radical reactions of 1‐propanol were propionaldehyde and acetaldehyde, with corresponding formation yields of 0.719 ± 0.058 and 0.184 ± 0.030, respectively. Errors represent ±2σ. The experimental product yields were compared to predictions made using chemical mechanisms. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 810–818, 1999  相似文献   

9.
The rate coefficient for the reaction OH + CFH2CH2OH --> products (k1) between 238 and 355 K was measured using the pulsed laser photolysis-laser induced fluorescence (PLP-LIF) technique to be (5.15 +/- 0.88)x 10(-12) exp[-(330 +/- 45)/T] cm3 molecule(-1) s(-1); k1(298 K)= 1.70 x 10(-12) cm3 molecule(-1) s(-1). The quoted uncertainties are 2sigma(95% confidence level) and include estimated systematic errors. The present results are discussed in relation to the measured rate coefficients for the reaction of OH with other fluorinated alcohols and those calculated using recently reported structure additivity relationships for fluorinated compounds (K. Tokuhashi, H. Nagai, A. Takahashi, M. Kaise, S. Kondo, A. Sekiya, M. Takahashi, Y. Gotoh and A. Suga, J. Phys. Chem. A, 1999, 103, 2664-2672, ). Infrared absorption cross sections for CFH2CH2OH are reported and they are used to calculate the global warming potentials (GWP) for CFH2CH2OH of approximately 8, approximately 2, and approximately 1, respectively, for the 20, 100 and 500 year horizons. A brief discussion of the atmospheric degradation of CFH2CH2OH is provided. It is concluded that CFH2CH2OH is an acceptable substitute for CFCs in terms of its impact on Earth's climate and the composition of the atmosphere. The room temperature rate coefficient for the reaction OH + CFH2CH2OH --> products (k10) was measured to be 3.26 x 10(-12) cm3 molecule(-1) s(-1), in good agreement with recent measurements from this laboratory.  相似文献   

10.
Rate coefficients for the gas-phase reactions of OH radicals with four unsaturated alcohols, 3-methyl-3-buten-1-ol (k1), 2-buten-1-ol (k2), 2-methyl-2-propen-1-ol (k3) and 3-buten-1-ol (k4), were measured using two different techniques, a conventional relative rate method and the pulsed laser photolysis-laser induced fluorescence technique. The Arrhenius rate coefficients (in units of cm(3) molecule(-1) s(-1)) over the temperature range 263-371 K were determined from the kinetic data obtained as k1 = (5.5 +/- 1.0) x 10(-12) exp [(836 +/- 54)/T]; k2 = (6.9 +/- 0.9) x 10(-12) exp [(744 +/- 40)/T]; k3 = (10 +/- 1) x 10(-12) exp [(652 +/- 27)/T]; and k4 = (4.0 +/- 0.4) x 10(-12) exp [(783 +/- 32)/T]. At 298 K, the rate coefficients obtained by the two methods for each of the alcohols studied were in good agreement. The results are presented and compared with those obtained previously for the same and related reactions of OH radicals. Reactivity factors for substituent groups containing the hydroxyl group are determined. The atmospheric implications for the studied alcohols are considered briefly.  相似文献   

11.
Rate coefficients have been determined for the gas‐phase reaction of the hydroxyl (OH) radical with the aromatic dihydroxy compounds 1,2‐dihydroxybenzene, 1,2‐dihydroxy‐3‐methylbenzene and 1,2‐dihydroxy‐4‐methylbenzene as well as the two benzoquinone derivatives 1,4‐benzoquinone and methyl‐1,4‐benzoquinone. The measurements were performed in a large‐volume photoreactor at (300 ± 5) K in 760 Torr of synthetic air using the relative kinetic technique. The rate coefficients obtained using isoprene, 1,3‐butadiene, and E‐2‐butene as reference hydrocarbons are kOH(1,2‐dihydroxybenzene) = (1.04 ± 0.21) × 10−10 cm3 s−1, kOH(1,2‐dihydroxy‐3‐methylbenzene) = (2.05 ± 0.43) × 10−10 cm3 s−1, kOH(1,2‐dihydroxy‐4‐methylbenzene) = (1.56 ± 0.33) × 10−10 cm3 s−1, kOH(1,4‐benzoquinone) = (4.6 ± 0.9) × 10−12 cm3 s−1, kOH(methyl‐1,4‐benzoquinone) = (2.35 ± 0.47) × 10−11 cm3 s−1. This study represents the first determination of OH radical reaction‐rate coefficients for these compounds. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 696–702, 2000  相似文献   

12.
Rate coefficients for the reaction of Cl atoms with cycloalkenes have been determined using the relative rate method, at 298 K and atmospheric pressure of N2. Reference molecule was n‐hexane, and the concentrations of the organics were followed by gas chromatographic analysis. Cl atoms were prepared by photolysis of trichloroacetyl chloride at 254 nm. The relative rates of reactions of Cl atoms with cycloalkenes, with respect to n‐hexane, are measured as 1.12 ± 0.38, 1.31 ± 0.14, and 1.69 ± 0.18 for cyclopentene, cyclohexene, and cycloheptene, respectively. Considering the absolute value of the rate coefficient of the reaction of Cl atom with n‐hexane as 3.03 ± 0.06 × 10?10 cm3 molecule?1 s?1, the rate coefficient values for cyclopentene, cyclohexene, and cycloheptene are calculated to be (3.39 ± 1.08) × 10?10, (3.97 ± 0.43) × 10?10, and (5.12 ± 0.55) × 10?10 cm3 molecule?1 s?1, respectively. The experiments for each molecule were repeated six to eight times, and the slopes and the rate coefficients given above are the average values of these measurements, and the quoted error includes 2σ as well as all other uncertainties in the measurement and calculations. The rate coefficient increases linearly with the number of carbon atoms, with an increment per additional CH2 group being (8.7 ± 1.6) × 10?12 cm3 molecule?1 s?1. Chloroketones and chloroalcohols, along with unsaturated ketones and alcohols, were found to be the major products of Cl‐atom‐initiated oxidation of cycloalkenes in the presence of air. The atmospheric implications of these results are discussed, along with a comparison with the reported structure activity relationships. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 42: 98–105, 2010  相似文献   

13.
The rate constants for the reactions of OH radicals with fully fluorinated alkenes containing different numbers of -CF(3) groups next to olefinic carbon, CF(2)═CF(2), CF(2)═CFCF(3), CF(3)CF═CFCF(3), and (CF(3))(2)C═CFC(2)F(5), were measured between 230 and 480 K using the flash photolysis resonance fluorescence technique to give the following expressions: k(C(2)F(4))(250-480 K) = 1.32 × 10(-12) × (T/298 K)(0.9) × exp(+600 K/T) cm(3) molecule(-1) s(-1), k(C(3)F(6))(230-480 K) = 9.75 ×10(-14) × (T/298 K)(1.94) × exp(+922 K/T) cm(3) molecule(-1) s(-1), k(trans-C(4)F(8))(230-370 K) = 7.50 × 10(-14) × (T/298 K)(1.68) × exp(+612 K/T) cm(3) molecule(-1) s(-1), k(cis-C(4)F(8))(230-370 K) = 2.99 × 10(-14) × (T/298 K)(2.61) × exp(+760 K/T) cm(3) molecule(-1) s(-1), and k(C(6)F(12))(250-480 K) = 2.17 × 10(-15) × (T/298 K)(3.90) × exp(+1044 K/T) cm(3) molecule(-1) s(-1). The kinetics of the OH reaction in an industrial sample of octofluoro-2-propene (a mixture of the cis- and trans-isomers of CF(3)CF═CFCF(3)) was studied to determine the "effective" reaction rate constant for the typically industrial mixture: k()(230-480 K) = 7.89 × 10(-14) × (T/298 K)(1.71) × exp(+557 K/T) cm(3) molecule(-1) s(-1). On the basis of these results, the atmospheric lifetimes were estimated to be 1.2, 5.3, 21, 34, and 182 days for CF(2)═CF(2), CF(3)CF═CF(2), trans-CF(3)CF═CFCF(3), cis-CF(3)CF═CFCF(3), and (CF(3))(2)C═CFC(2)F(5), respectively. The general pattern of halolalkene reactivity toward OH is discussed.  相似文献   

14.
The rate coefficient, k1, for the gas‐phase reaction OH + CH3CHO (acetaldehyde) → products, was measured over the temperature range 204–373 K using pulsed laser photolytic production of OH coupled with its detection via laser‐induced fluorescence. The CH3CHO concentration was measured using Fourier transform infrared spectroscopy, UV absorption at 184.9 nm and gas flow rates. The room temperature rate coefficient and Arrhenius expression obtained are k1(296 K) = (1.52 ± 0.15) × 10?11 cm3 molecule?1 s?1 and k1(T) = (5.32 ± 0.55) × 10?12 exp[(315 ± 40)/T] cm3 molecule?1 s?1. The rate coefficient for the reaction OH (ν = 1) + CH3CHO, k7(T) (where k7 is the rate coefficient for the overall removal of OH (ν = 1)), was determined over the temperature range 204–296 K and is given by k7(T) = (3.5 ± 1.4) × 10?12 exp[(500 ± 90)/T], where k7(296 K) = (1.9 ± 0.6) × 10?11 cm3 molecule?1 s?1. The quoted uncertainties are 2σ (95% confidence level). The preexponential term and the room temperature rate coefficient include estimated systematic errors. k7 is slightly larger than k1 over the range of temperatures included in this study. The results from this study were found to be in good agreement with previously reported values of k1(T) for temperatures <298 K. An expression for k1(T), suitable for use in atmospheric models, in the NASA/JPL and IUPAC format, was determined by combining the present results with previously reported values and was found to be k1(298 K) = 1.5 × 10?11 cm3 molecule?1 s?1, f(298 K) = 1.1, E/R = 340 K, and Δ E/R (or g) = 20 K over the temperature range relevant to the atmosphere. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 635–646, 2008  相似文献   

15.
The kinetics and mechanism of the reaction of chlorine atoms with n‐butanal and n‐pentanal have been investigated in a 142‐L reaction cell coupled to a Fourier transform infrared (FTIR) spectrometer at 298 ± 2 K and at 800 ± 3 Torr. The rate coefficients for Cl + n‐butanal and Cl + n‐pentanal were measured using the relative rate technique with isopropanol and ethene as the reference compounds. The yield of acyl radicals was determined by measuring yields of acid chloride and carbon monoxide products from the reaction of Cl + aldehyde in the absence of oxygen. The rate coefficients for Cl + n‐butanal and Cl + n‐pentanal are (1.63 ± 0.59) × 10?10 cm3 molecule?1 s? 1 and (2.37 ± 0.82) × 10?10 cm3 molecule?1 s?1, respectively. The yields of acyl radicals from the reactions are 0.66 ± 0.04 for n‐butanal and 0.45 ± 0.04 for n‐pentanal. Under ambient conditions, the acyl radicals generated will react almost exclusively with oxygen. Mechanistic implications of these measurements are discussed. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 41: 133–141, 2009  相似文献   

16.
Rate constants for the reactions of OH radicals and Cl atoms with 1‐propanol (1‐C3H7OH) have been determined over the temperature range 273–343 K by the use of a relative rate technique. The value of k(Cl + 1‐C3H7OH) = (1.69 ± 0.19) × 10?12 cm3 molecule?1 s?1 at 298 K and shows a small increase of 10% between 273 and 342 K. The value of k(OH + 1‐C3H7OH) increases by 14% between 273 and 343 K with a value of (5.50 ± 0.55) × 10?12 cm3 molecule?1 s?1 at 298 K, and further when combined with a single independent experimentally determined value at 753 K gives k(OH + 1‐C3H7OH) = 4.69 × 10?17T1.8 exp(422/T) cm3 molecule?1 s?1, which fits each data point to better than 2%. Two well‐established structure–activity relationships for H abstraction by OH radicals give accurate predictions of the rate constant for OH + 1‐C3H7OH, provided the β‐CH2 group is given an increased reactivity of a factor of about 2 over that for the structurally equivalent CH2 group in alkanes at 298 K. A quantitative product analysis was carried out at 298 K for the Cl‐initiated photooxidation of 1‐C3H7OH, using both FTIR and gas chromatography. HCHO, CH3CHO, and C2H5CHO were the only major organic primary products observed, although HCOOH was found in much smaller amounts as a secondary product. A key characteristic of the analysis was that the initial values of the product ratio [CH3CHO]/[C2H5CHO] were effectively constant for NO pressures between 0.15 and 0.3 Torr, but fell by about 35% as the pressure fell to 0.0375 Torr. From a detailed consideration of the mechanism for the oxidation, it is suggested that C2H5CHO, CH3CHO (+HCHO), and 3 molecules of HCHO are formed uniquely from CH3CH2CHOH, CH3CHCH2OH, and CH2CH2CH2OH radicals, respectively. On this basis, use of the product yields gives the branching ratios of 56, 30, and 14% for Cl atom reaction at the α‐, β‐, and γ‐C? H positions in 1‐C3H7OH at 298 K. Given the very low temperature coefficients involved, little change will occur over tropospheric temperature ranges. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 34: 110–121, 2002  相似文献   

17.
The rate constant for the reaction of OH radicals with molecular hydrogen was measured using the flash photolysis resonance-fluorescence technique over the temperature range of 200-479 K. The Arrhenius plot was found to exhibit a noticeable curvature. Careful examination of all possible systematic uncertainties indicates that this curvature is not due to experimental artifacts. The rate constant can be represented by the following expressions over the indicated temperature intervals: k(H2)(250-479 K) = 4.27 x 10(-13) x (T/298)2.406 x exp[-1240/T] cm3 molecule(-1) (s-1) above T = 250 K and k(H2)(200-250 K) = 9.01 x 10(-13) x exp[-(1526 +/- 70)/T] cm3 molecule(-1) s(-1) below T = 250 K. No single Arrhenius expression can adequately represent the rate constant over the entire temperature range within the experimental uncertainties of the measurements. The overall uncertainty factor was estimated to be f(H2)(T) = 1.04 x exp[50 x /(1/T) - (1/298)/]. These measurements indicate an underestimation of the rate constant at lower atmospheric temperatures by the present recommendations. The global atmospheric lifetime of H2 due to its reaction with OH was estimated to be 10 years.  相似文献   

18.
Using a relative rate method, rate constants for the gas‐phase reactions of OH radicals with allyl alcohol, 3‐buten‐1‐ol, 3‐buten‐2‐ol, and 2‐methyl‐3‐buten‐2‐ol have been measured at 296 ± 2 K and atmospheric pressure of air. Using 1,3,5‐trimethylbenzene as the reference compound, the rate constants (in units of 10−11 cm3 molecule−1 s−1) were: allyl alcohol, 5.46 ± 0.35; 3‐buten‐1‐ol, 5.50 ± 0.20; 3‐buten‐2‐ol, 5.93 ± 0.23; and 2‐methyl‐3‐buten‐2‐ol, 5.67 ± 0.13; where the indicated errors are two least‐squares standard deviations and do not include the uncertainty in the rate constant for 1,3,5‐trimethylbenzene. The H‐atom abstraction products acrolein and methyl vinyl ketone were observed from the allyl alcohol and 3‐buten‐2‐ol reactions, respectively, with respective yields of 5.5 ± 0.7 and 4.9 ± 1.4%. No evidence for formation of acrolein from 3‐buten‐1‐ol or 3‐buten‐2‐ol was obtained, with upper limits to the acrolein yields of ≤1.2 and ≤0.5%, respectively, being determined. Reaction mechanisms are discussed. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 142–147, 2001  相似文献   

19.
Rate coefficients, k(T), for the OH + CHF=CF2 (trifluoroethylene, HFO‐1123) gas‐phase reaction were measured under pseudo–first‐order conditions using pulsed laser photolysis to produce OH radicals and pulsed laser induced fluorescence to measure the OH radical temporal profile. Rate coefficients were measured over the temperature range 212–375 K at total pressures between 20 and 500 Torr (He, N2 bath gas). The rate coefficient was found to be independent of pressure over this range of pressure with a temperature dependence that is described by the Arrhenius expression (3.04 ± 0.30) × 10–12 exp[(312 ± 25)/T] cm3 molecule–1 s1 with k(296 K) measured to be (8.77 ± 0.80) × 10–12 cm3 molecule–1 s1 (quoted uncertainties are 2σ and include estimated systematic errors). Rate coefficients for the reaction of CHF=CF2 with 18OH and OD were also measured as part of this study at 296 and 373 K and a total pressure of ~25 Torr (He). The isotope measurements were used to evaluate the observed OH radical regeneration. CHF=CF2 is a very short‐lived substance with an atmospheric lifetime of ~1 day with respect to OH reactive loss, whereas the actual lifetime of CHF=CF2 will depend on the time and location of its emission. The global warming potential for CHF=CF2 on the 100‐year time horizon (GWP100) was estimated using the present results and a lifetime correction factor to be 3.9 × 10?3.  相似文献   

20.
Efficient separation of n‐butene (n‐C4H8) and iso‐butene (iso‐C4H8) is of significance for the upgrading of C4 olefins to high‐value end products but remains one of the major challenges in hydrocarbon purifications owing to their similar structures. Herein, we report a flexible metal‐organic framework, MnINA (INA=isonicotinate), featuring one‐dimensional pore channels with periodically large pocket‐like cavities connected by narrow bottlenecks, for the first time for efficient n‐/iso‐C4H8 separation. MnINA with smaller pore size (4.62 Å) compared with CuINA (4.84 Å), exhibits steep adsorption isotherms and high capacity of 1.79 mmol g?1 for n‐C4H8 (4.46 Å) through strong host‐guest interactions via C?H???π bonding. The narrow bottlenecks exert barriers for the large molecules of iso‐C4H8 (4.84 Å) within the gate‐opening pressure range of 0–0.1 bar. This gives rise to MnINA with excellent separation selectivity of 327.7 for n‐/iso‐C4H8 mixture. The adsorption mechanism for n‐C4H8 and the gate‐opening effect were investigated by dispersion‐corrected density functional (DFT‐D) theory, verifying the strong interactions between n‐C4H8 and the frameworks as well as the gate‐opening effect derived from the rotation of organic linkers. The breakthrough tests confirmed MnINA and CuINA can be promising candidates for n‐/iso‐C4H8 separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号