共查询到17条相似文献,搜索用时 15 毫秒
1.
In this study a cisplatin-loaded, multilayered polylactide (PLA) electrospun nanofibers, with the structure of two layers of drug-loaded mat being sandwiched by three layers of blank mat, were designed for prolonged cisplatin release at surgical margin to prevent local cancer recurrence following surgical resection in a murine model. In vivo drug release and biodistribution study suggested that the multilayered fibrous mat displayed a slower cisplatin release behavior and a more stable drug rentention in the local tissue within 24 h than that of single-layered fibrous mat. By covering the surgical site with the multilayered fibrous mat following resection of subcutaneous liver cancer in mice, retarded tumor recurrence, prolonged survival time and less systemic toxicity were observed compared with other treatment groups. 相似文献
2.
Chemical Design of Nuclear‐Targeting Mesoporous Silica Nanoparticles for Intra‐nuclear Drug Delivery
《中国化学》2018,36(6):481-486
Targeted drug delivery has been widely explored for efficient tumor therapy with desired efficacy but minimized side effects. It is widely known that large numbers of DNA‐toxins, such as doxorubicin, genes, reactive oxygen species, serving as therapeutic agents, can result in maximized therapeutic effects via the interaction directly with DNA helix. So after cellular uptake, these agents should be further delivered into cell nuclei to play their essential roles in damaging the DNA helix in cancer cells. Here, we demonstrate the first paradigm established in our laboratory in developing nuclear‐targeted drug delivery systems (DDSs) based on MSNs for enhanced therapeutic efficiency in the hope of speeding their translation into the clinics. Firstly, nuclear‐targeting DDSs based on MSNs, capable of intranuclear accumulation and drug release therein, were designed and constructed for the first time, resulting in much enhanced anticancer effects both in vitro and in vivo. Such an MSNs‐based and nuclear‐targeted drug/agent delivery strategy was further applied to overcome multidrug resistance (MDR) of malignant tumors, intra‐nuclearly deliver therapeutic genes, photosensitizers, radio‐enhancement agents and photothermal agents to realize efficient gene therapy, photodynamic therapy, radiation therapy and photothermal therapy, respectively. 相似文献
3.
Dr. Jonas G. Croissant Yevhen Fatieiev Haneen Omar Dr. Dalaver H. Anjum Dr. Andrey Gurinov Dr. Jie Lu Prof. Fuyuhiko Tamanoi Prof. Jeffrey I. Zink Prof. Niveen M. Khashab 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(28):9607-9615
Despite the worldwide interest generated by periodic mesoporous organosilica (PMO) bulk materials, the design of PMO nanomaterials with controlled morphology remains largely unexplored and their properties unknown. In this work, we describe the first study of PMO nanoparticles (NPs) based on meta‐phenylene bridges, and we conducted a comparative structure–property relationship investigation with para‐phenylene‐bridged PMO NPs. Our findings indicate that the change of the isomer drastically affects the structure, morphology, size, porosity and thermal stability of PMO materials. We observed a much higher porosity and thermal stability of the para‐based PMO which was likely due to a higher molecular periodicity. Additionally, the para isomer could generate multipodal NPs at very low stirring speed and upon this discovery we designed a phenylene–ethylene bridged PMO with a controlled Janus morphology. Unprecedentedly high payloads could be obtained from 40 to 110 wt % regardless of the organic bridge of PMOs. Finally, we demonstrate for the first time the co‐delivery of two cargos by PMO NPs. Importantly, the cargo stability in PMOs did not require the capping of the pores, unlike pure silica, and the delivery could be autonomously triggered in cancer cells by acidic pH with nearly 70 % cell killing. 相似文献
4.
《Arabian Journal of Chemistry》2022,15(4):103693
In the recent study, we decided to survey the capacities of metallic nanoparticles formulated by Allium monanthum (AgNPs) as a novel chemotherapeutic drug in the treatment of several types of breast cancers. Characterization of AgNPs was done by UV–Visible Spectroscopy (UV–Vis), Fourier Transformed Infrared Spectroscopy (FT‐IR), Transmission Electron Microscopy (TEM), and Field Emission Scanning Electron Microscopy (FE‐SEM). For investigating the antioxidant properties of AgNO3, Allium monanthum, and AgNPs, the DPPH test was used in the presence of butylated hydroxytoluene as the positive control. To survey the cytotoxicity and anti-breast cancer effects of AgNO3, Allium monanthum, and AgNPs, MTT assay was used on the breast adenocarcinoma (MCF7), breast carcinoma (Hs 578Bst), infiltrating ductal cell carcinoma (Hs 319.T), infiltrating lobular carcinoma of breast (UACC-3133), inflammatory carcinoma of the breast (UACC-732), and metastatic carcinoma (MDA-MB-453) cell lines. DPPH test revealed similar antioxidant potentials for Allium monanthum, AgNPs, and butylated hydroxytoluene. Silver nanoparticles had very low cell viability and anti-breast cancer properties dose-dependently against MCF7, Hs 578Bst, Hs 319.T, UACC-3133, UACC-732, and MDA-MB-453 cell lines without any cytotoxicity on the normal cell line. The best result of anti-breast cancer properties of AgNPs against the above cell lines was seen in the case of the UACC-3133 cell line. According to the above findings, the silver nanoparticles containing Allium monanthum aqueous extract can be administrated in humans for the treatment of several types of breast cancer especially breast adenocarcinoma, breast carcinoma, infiltrating ductal cell carcinoma, infiltrating lobular carcinoma of breast, inflammatory carcinoma of the breast, and metastatic carcinoma. 相似文献
5.
6.
以介孔聚多巴胺(MPDA)的制备为出发点,通过搭载化疗药物阿霉素(DOX)和包覆相变材料 1-十四醇(PCM),构建了 pH/光热双重响应的 MPDA-DOX@PCM 纳米递送系统,实现了对耐药膀胱癌细胞(BIU-87/ADR)的光热治疗(PTT)和化疗。结果表明,MPDA-DOX@PCM 尺寸约为 179 nm,DOX的最大搭载率为 22%,光热转换效率高达 49.1%。在 pH=7.4和温度为 25 ℃的条件下,DOX的累积释放率为4.57%;当pH值降为5.5和温度升高到45 ℃时,DOX的累积释放率可提高到60.13%。在808 nm激光辐照下,MPDA-DOX@PCM孵育的BIU-87/ADR细胞存活率降低至9.5%,证明了其优异的PTT/化疗联合治疗性能。 相似文献
7.
Nanoparticles‐based drug delivery strategies have been widely researched for cancer therapy. However, most of them are expected to accumulate in tumor sites via the enhanced permeability and retention (EPR) effect, which is insufficient to deliver the loaded drug into tumors. Cell membrane–camouflaged nanoparticles have obtained much attention for their excellent stability and long blood circulation and reduced the macrophage cells uptake in drug delivery. Herein, bone marrow–derived mesenchymal stem cell membrane vesicle (SCV)–coated paclitaxel (PTX)–loaded poly (lactide‐co‐glycolide) (PLGA) nanoparticles (SCV/PLGA/PTX) were fabricated as the efficient orthotopic breast cancer–targeted drug delivery system. The SCV/PLGA/PTX showed excellent stability, more controlled PTX release, and more effective antitumor effect in vitro. After administration in vivo, SCV/PLGA/PTX exhibited the long‐term retention and enhanced accumulation at tumor sites due to the immune escape and mesenchymal stem cell–mimicking cancer‐targeting capacity. As expected, the SCV/PLGA/PTX could significantly suppress the primary tumor growth by increased apoptosis and necrosis areas within tumor tissues and attenuated the toxic side effects of PTX in 4T1 orthotopic breast cancer model. The study indicated the mesenchymal stem cell membrane coating strategy was highly efficient for targeted drug delivery, which provided a new insight for precise and effective breast cancer treatment. 相似文献
8.
Xu Hun Zhujun Zhang 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2009,74(2):410-414
Fluorescent nanoparticles (FNs) with unique optical properties may be useful as biosensors in living cancer cell imaging and cancer targeting. In this study, anti-EGFR antibody conjugated fluorescent nanoparticles (FNs) (anti-EGFR antibody conjugated FNs) probe was used to detect breast cancer cells. FNs with excellent character such as non-toxicity and photostability were first synthesized with a simple, cost-effective and environmentally friendly modified Stőber synthesis method, and then successfully modified with anti-EGFR antibody. This kind of fluorescence probe based on the anti-EGFR antibody conjugated FNs has been used to detect breast cancer cells with fluorescence microscopy imaging technology. The experimental results demonstrate that the anti-EGFR antibody conjugated FNs can effectively recognize breast cancer cells and exhibited good sensitivity and exceptional photostability, which would provide a novel way for the diagnosis and curative effect observation of breast cancer cells and offer a new method in detecting EGFR. 相似文献
9.
《Arabian Journal of Chemistry》2022,15(8):103966
Intrinsic enzyme-mimic activity of inorganic nanoparticles has been widely used for nanozymatic anticancer and antibacterial treatment. However, the relatively low peroxidase-mimic activity (PMA) and catalse-mimic activity (CMA) of nanozymes in tumor microenvironment has hampered their potential application in the cancer therapy. Therefore, in this study, we aimed to fabricate platinum (Pt) nanozymes dispersed on the surface of iron oxide (Fe3O4) nanosphere that, in addition to boosting the PMA and CMA, resulted in the formation of a pH-sensitive nano-platform for drug delivery in breast cancer therapy. After development of Fe3O4 nanospheres containing Pt nanozymes and loading 5-fluorouracil (abbreviated as: Fe3O4/Pt-FLU@PEG nanospheres), the physicochemical properties of the nanospheres were examined by electron microscopy, dynamic light scattering, zeta potential, X-ray diffraction, thermogravimetric, BET surface, and PMA/CMA analyses. Then, the cytotoxicity of the Fe3O4/Pt-FLU@PEG nanospheres against 4T1 cells was investigated by the cell counting kit-8 assay and flow cytometry. Also, the anticancer effect of fabricated nanoplatform was assessed in mouse bearing 4T1 cancer tumors, in vivo. The results showed that the Fe3O4/Pt-FLU@PEG nanospheres provide a platform for optimal FLU loading, continuous pH-sensitive drug release, and potential PMA and CMA to increase the level of ROS and O2, respectively. Cytotoxicity outputs showed that the Fe3O4/Pt-FLU@PEG nanospheres mitigate the proliferation of 4T1 cancer cells mediated by apoptosis and intracellular generation of reactive oxygen species (ROS). Furthermore, in vivo assays indicated a significant reduction in tumor size and overcoming tumor hypoxia. Overall, we believe that the developed nanospheres with dual enzyme-mimic activity and pH-sensitive drug delivery can be used for ROS/chemotherapy double-modality antitumor therapy. 相似文献
10.
Lee SJ Huh MS Lee SY Min S Lee S Koo H Chu JU Lee KE Jeon H Choi Y Choi K Byun Y Jeong SY Park K Kim K Kwon IC 《Angewandte Chemie (International ed. in English)》2012,51(29):7203-7207
The condensed version: Thiolated glycol chitosan can form stable nanoparticles with polymerized siRNAs through charge-charge interactions and self-cross-linking (see scheme). This poly-siRNA/glycol chitosan nanoparticles (psi-TGC) provided sufficient in?vivo stability for systemic delivery of siRNAs. Knockdown of tumor proteins by psi-TGC resulted in a reduction in tumor size and vascularization. 相似文献
11.
To efficiently deliver CpG oligodeoxynucleotides (ODN) in cancer immunotherapy, a multifunctional macrophage targeting delivery system was designed and prepared. Mannosylated carboxymethyl chitosan/protamine sulfate/CaCO3/ODN (MCMC/PS/CaCO3/ODN) nanoparticles were prepared using a facile self-assembly method. The functional components, including MCMC to endow the nanoparticles with macrophage targeting ability, PS to improve the ODN loading capacity and enhance the cell uptake, and CaCO3 to encapsulate ODN and induce the favorable pH sensitivity, were introduced to the delivery systems by self-assembly. Due to the mannose mediated endocytosis and the favorable effects of PS in overcoming delivery barriers, MCMC/PS/CaCO3/ODN nanoparticles exhibit a much higher ODN delivery efficiency and a significantly enhanced immune stimulation capacity as compared with Lipofectamine 2000/ODN complexes. The regulation of NF-κB activity by our ODN delivery system results in dramatically increased production of proinflammatory cytokines including IL-12, IL-6, and TNF-α in RAW264.7 cells. The significantly increased CD80 expression after stimulation by the ODN delivery systems indicates the successful modulation of the macrophage polarity to the anti-tumor M1 phenotype. The multifunctional macrophage targeting delivery system developed has promising applications in delivery of CpG ODN in cancer immunotherapy. 相似文献
12.
miRNA has recently emerged as a potential biomarker for breast cancer. Even though many studies have identified ethnic variation affecting miRNA regulation, the effect of cancer stage within specific ethnicities on miRNA epigenetic remains unclear. The present study is designed to investigate miRNA regulation from two distinct ethnicities in specific cancer stages (non-Hispanic white and non-Hispanic black) using the TCGA dataset. Differentially expressed miRNAs were calculated by using the edgeR package. miRNAs with the highest or lowest log fold Change from each cancer stage were selected as a potential biomarker. miRNA-gene interaction was analyzed by using spearman correlation analysis, CLUEGO, and DIANA-mirpath. The association of biomarker candidates with diagnostic and prognostic performance was assessed using ROC and Kaplan-Meier survival analysis. miRNA-gene interaction analysis revealed the involvement of selected miRNAs in cancer progression. From eleven selected aberrant miRNAs, four of the miRNAs (hsa-mir-495, hsa-mir-592, hsa-mir-6501, and hsa-mir-937) are significantly detrimental to breast cancer diagnosis and prognosis. Hence, our result provides valuable information to explore miRNA’s role in each cancer stage between non-Hispanic white and non-Hispanic black. 相似文献
13.
HB5 aptamer-based probe has been developed for serum HER2-ECD test in auxiliary clinical diagnosis and treatment for HER2-positive breast cancer patients. 相似文献
14.
A solid-liquid extraction method is developed to establish the contents of selenium in breast cancer biopsies. The method is based on the ultrasound-assisted extraction of selenium from pretreated biopsies prior to Se determination by atomic absorption spectrometry with longitudinal-Zeeman background correction. Fifty-one breast biopsies were collected from the Cies Hospital (Vigo, Spain), 32 of which correspond to tumor tissue and 19 to normal tissue (parenchyma). Difficulties arising from the samples analyzed, i.e. small samples mass (50-100 mg), extremely low Se contents and sample texture modification including tissue hardening due to formaldehyde preservation are addressed and overcome. High intensity sonication using a probe together with addition of hydrogen peroxide succeeded in completely extracting Se from biopsies. The multiple injection technique was useful to tackle the low Se contents present in some biopsies. The detection limit was 25 ng g−1 of Se and the precision, expressed as relative standard deviation, was less than 10%. Se contents ranged from 0.08 to 0.4 μg g−1 for parenchyma samples and from 0.09 to 0.8 μg g−1 for tumor samples. In general, Se levels in tumor biopsies were higher as compared with the adjacent normal tissue in 19 patients by a factor of up to 6. Analytical data confirmed Se accumulation in the breast tumors. 相似文献
15.
《Arabian Journal of Chemistry》2020,13(10):7264-7273
Breast cancer is the second leading cancer diagnosed globally and every year about two million new incidences were accounted. Curcuma wenyujin, a rhizome grown abundantly in china and used in various traditional Chinese medicines. Recent times the research on anticancer property of Curcuma wenyujin is extensively on progress and it is proved by many researchers. The major drawback of herbal drugs are their limited bio-availability, to overcome this we formulated a herbal gold nanodrug with Curcuma wenyujin (CW-AuNPs) and examined its anticancer potential against breast cancer cells. The cytotoxic effect of synthesized CW-AuNPs against MDA-MB231/HER2 cell line was inspected by MTT assay and the dosage for further analysis was calculated. The apoptosis triggered by CW-AuNPs was investigated by intracellular ROS and caspases levels in CW-AuNPs treated MDA-MB231/HER2 cell line. Over expression of HER2/neu, oncogene leads to meager prognosis in most of the breast cancer patients. Therefore in the current exploration, we investigated the inhibitory potential of CW-AuNPs against the expression of HER2/neu in breast cancer cell line by immunocytochemical and immunoblotting analysis. Our results of UV-Spec, FTIR, TEM and Atomic force investigation confirms, the synthesized nanodrug CW-AuNPs satisfies the characteristic features of a nanodrug. The results authentically proves that CW-AuNPs possessed the potent anticancer activity, increases ROS in breast cancer cells which in turn inhibits the HER2/neu, key oncogene expression and inhibited the cancer cell proliferation. 相似文献
16.
Chao Song Dan Gao Tianying Yuan Yongli Chen Liping Liu Xiaowu Chen Yuyang Jiang 《中国化学快报》2019,30(5):1038-1042
Cell migration and invasion are critical steps in cancer metastasis, which are the major cause of death in cancer patients. Tumor-associated macrophages(TAMs) and interstitial flow(IF) are two important biochemical and biomechanical cues in tumor microenvironment, play essential roles in tumor progression. However, their combined effects on tumor cell migration and invasion as well as molecular mechanism remains largely unknown. In this work, we developed a microfluidic-based 3 D breast cancer model by co-culturing tumor aggregates, macrophages, monocytes and endothelial cells within 3 D extracellular matrix in the presence of IF to study tumor cell migration and invasion. On the established platform, we can precisely control the parameters related to tumor microenvironment and observe cellular responses and interactions in real-time. When co-culture of U937 with human umbilical vein endothelial cells(HUVECs) or MDA-MB-231 cells and tri-culture of U937 with HUVECs and MDA-MB-231 cells, we found that mesenchymal-like MDA-MB-231 aggregates activated the monocytes to TAM-like phenotype macrophages. MDA-MB-231 cells and IF simultaneously enhanced the macrophages activation by the stimulation of colony-stimulating factor 1(CSF-1). The activated macrophages and IF further promoted vascular sprouting via vascular endothelial growth factor(VEGFα) signal and tumor cell invasion. This is the first attempt to study the interaction between macrophages and breast cancer cells under IF condition. Taken together, our results provide a new insight to reveal the important physiological and pathological processes of macrophages-tumor communication. Moreover, our established platform with a more mimetic 3 D breast cancer model has the potential for drug screening with more accurate results. 相似文献
17.
JCC76 is a novel nimesulide analog that selectively inhibits the human epidermal growth factor receptor 2 (HER2) overexpressing breast cancer cell proliferation and tumor progression. To support further pharmacological and toxicological studies of JCC76, a novel and rapid method using liquid chromatography and electrospray ionization tandem mass spectrometry (LC‐ESI‐MS/MS) has been developed and validated for the quantification of the compound in rat plasma. A C18 column was used for chromatographic separation, and the mobile phase was aqueous ammonium formate (pH 3.7; 5 mm )–methanol (1:9, v/v) with an isocratic elution. With a simple liquid–liquid extraction procedure using the mixture of methyl tert‐butyl ether–hexane (1:2, v/v), the mean extraction efficiency of JCC76 in rat plasma was determined as 89.5–97.3% and no obvious matrix effect was observed. This method demonstrated a linear calibration range from 0.3 to 100 ng/mL for JCC76 in rat plasma and a small volume of sample consumption. The intra‐ and inter‐assay accuracy and precision were within ±10%. The pharmacokinetics of JCC76 was also profiled using this validated method in rats. In conclusion, this rapid and sensitive method has been proven to effectively quantify JCC76 for pharmacokinetics study. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献