首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Neutrino mixing lead to a non zero contribution to the dark energy of the universe. We assume that the neutrino masses and mixing arise through physics at a scale intermediate between Planck Scale and the electroweak scale. The mechanism of neutrino mixing is a possible candidate to contribute the cosmological dark energy. Quantum gravitational (Planck scale) effects lead to an effective SU(2) L ×U(1) invariant dimension-5 Lagrangian involving neutrino and Higgs fields, which gives rise to additional terms in neutrino mass matrix. There additional term can be considered to be perturbation of the GUT scale bi-maximal neutrino mass matrix. We assume that the gravitational interaction is flavor. In this paper, we discuss the three flavor neutrino mixing and cosmological dark energy contributes due to Planck scale effects.  相似文献   

2.
Cosmology provides an excellent laboratory for testing various aspects of neutrino physics. Here, I review the current status of cosmological searches for neutrino mass, as well as other properties of neutrinos. Future cosmological probes of neutrino properties are also discussed in detail.  相似文献   

3.
We consider some cosmological consequences of a relic neutrino asymmetry. A relic neutrino degeneracy enhances the contribution of massive neutrinos to the present energy density of the Universe, and modifies the power spectrum of radiation and matter. We also show that even the smallest neutrino mass consistent with the Super—Kamiokande data is relevant for cosmological models, provided that a relic neutrino asymmetry exists.  相似文献   

4.
The present experimental results on neutrino flavour oscillations provide evidence for non-zero neutrino masses, but give no hint on their absolute mass scale, which is the target of beta decay and neutrinoless double-beta decay experiments. Crucial complementary information on neutrino masses can be obtained from the analysis of data on cosmological observables, such as the anisotropies of the cosmic microwave background or the distribution of large-scale structure. In this review we describe in detail how free-streaming massive neutrinos affect the evolution of cosmological perturbations. We summarize the current bounds on the sum of neutrino masses that can be derived from various combinations of cosmological data, including the most recent analysis by the WMAP team. We also discuss how future cosmological experiments are expected to be sensitive to neutrino masses well into the sub-eV range.  相似文献   

5.
By combining data from cosmic microwave background experiments (including the recent WMAP third year results), large scale structure, and Lyman-alpha forest observations, we constrain the hypothesis of a fourth, sterile, massive neutrino. For the 3 massless+1 massive neutrino case, we bound the mass of the sterile neutrino to ms<0.26 eV (0.44 eV) at 95% (99.9%) C.L., which excludes at high significance the sterile neutrino hypothesis as an explanation of the LSND anomaly. We generalize the analysis to account for active neutrino masses and the possibility that the sterile abundance is not thermal. In the latter case, the contraints in the plane are nontrivial. For a mass of >1 or <0.05 eV, the cosmological energy density in sterile neutrinos is always constrained to be omeganu<0.003 at 95% C.L., but for a mass of approximately 0.25 eV, omeganu can be as large as 0.01.  相似文献   

6.
A brief review for particle physicists on the cosmological impact of neutrinos and on restrictions on neutrino properties from cosmology is given. The paper includes a discussion of upper bounds on neutrino mass and possible ways to relax them, methods to observe the cosmic-neutrino background, bounds on the cosmological lepton asymmetry which are strongly improved by neutrino oscillations, cosmological effects of breaking of the spin-statistics theorem for neutrinos, bounds on mixing parameters of active and possible sterile neutrinos with account of active-neutrino oscillations, bounds on right-handed currents and neutrino magnetic moments, and some more. The text was submitted by the authors in English.  相似文献   

7.
Multi-messenger gravitational wave (GW) observation for binary neutron star merger events could provide a rather useful tool to explore the evolution of the Universe. In particular, for the third-generation GW detectors, i.e. the Einstein Telescope (ET) and the Cosmic Explorer (CE), proposed to be built in Europe and the U.S., respectively, lots of GW standard sirens with known redshifts could be obtained, which would exert great impacts on the cosmological parameter estimation. The total neutrino mass could be measured by cosmological observations, but such a measurement is model-dependent and currently only gives an upper limit. In this work, we wish to investigate whether the GW standard sirens observed by ET and CE could help improve the constraint on the neutrino mass, in particular in the interacting dark energy (IDE) models. We find that the GW standard siren observations from ET and CE can only slightly improve the constraint on the neutrino mass in the IDE models, compared to the current limit. The improvements in the IDE models are weaker than those in the standard cosmological model. Although the limit on neutrino mass can only be slightly updated, the constraints on other cosmological parameters can be significantly improved by using the GW observations.  相似文献   

8.
We constrain f(nu) identical with Omega(nu)/Omega(m), the fractional contribution of neutrinos to the total mass density in the Universe, by comparing the power spectrum of fluctuations derived from the 2 Degree Field Galaxy Redshift Survey with power spectra for models with four components: baryons, cold dark matter, massive neutrinos, and a cosmological constant. Adding constraints from independent cosmological probes we find f(nu)<0.13 (at 95% confidence) for a prior of 0.1相似文献   

9.
Neutrinos can play an important role in the evolution of the Universe, modifying some of the cosmological observables. We describe how the precision of present cosmological data can be used to learn about neutrino properties, in particular their mass. We show how the analysis of current cosmological observations provides an upper bound on the sum of neutrino masses, with improved sensitivity from future cosmological measurements.  相似文献   

10.
We point out that by considering the cosmic neutrino background and the recently obtained neutrino mass, we can deduce the correct value of the cosmological constant, thus resolving the so called cosmological constant problem.  相似文献   

11.
We report the result of a search for sterile neutrinos with the latest cosmological observations. Both cases of massless and massive sterile neutrinos are considered in the \(\Lambda \)CDM cosmology. The cosmological observations used in this work include the Planck 2015 temperature and polarization data, the baryon acoustic oscillation data, the Hubble constant direct measurement data, the Planck Sunyaev–Zeldovich cluster counts data, the Planck lensing data, and the cosmic shear data. We find that the current observational data give a hint of the existence of massless sterile neutrino (as dark radiation) at the 1.44\(\sigma \) level, and the consideration of an extra massless sterile neutrino can indeed relieve the tension between observations and improve the cosmological fit. For the case of massive sterile neutrino, the observations give a rather tight upper limit on the mass, which implies that actually a massless sterile neutrino is more favored. Our result is consistent with the recent result of neutrino oscillation experiment done by the Daya Bay and MINOS collaborations, as well as the recent result of cosmic ray experiment done by the IceCube collaboration.  相似文献   

12.
Recent achievements in the study of double-beta (ββ) decay are presented. We discuss the potential of this process to search, beyond Standard Model physics, for the QRPA-based methods used for the calculation of the relevant nuclear matrix elements and the derivation of the neutrino mass from both ββ-decay calculations and neutrino oscillation and cosmological data. The key position of the ββ-decay experiments in resolving the neutrino absolute mass is highlighted.  相似文献   

13.
Neutrinos interacting with the quintessence field can trigger the accelerated expansion of the Universe. In such models with a growing neutrino mass the homogeneous cosmological solution is often unstable to perturbations. We present static, spherically symmetric solutions of the Einstein equations in the same models. They describe astrophysical objects composed of neutrinos, held together by gravity and the attractive force mediated by the quintessence field. We discuss their characteristics as a function of the present neutrino mass. We suggest that these objects are the likely outcome of the growth of cosmological perturbations.  相似文献   

14.
In left-right symmetric grand unified theories both the smallness of the neutrino mass and a sizable cosmological baryon excess can be ascribed to a superheavy Majorana lepton. We show, taking SO(10) as the simplest model of this kind, that the largest neutrino mass is constrained to lie between 10?3 eV and 100 eV in order to give the observed magnitude of baryon excess.  相似文献   

15.
At present, cosmology provides the nominally strongest constraint on the masses of standard model neutrinos. However, this constraint is extremely dependent on the nature of the dark energy component of the Universe. When the dark energy equation of state parameter is taken as a free (but constant) parameter, the neutrino mass bound is sigma m(v) < or = 1.48 eV (95% C.L.), compared with sigma m(v) < or = 0.65 eV (95% C.L.) in the standard model where the dark energy is in the form of a cosmological constant. This has important consequences for future experiments aimed at the direct measurement of neutrino masses. We also discuss prospects for future cosmological measurements of neutrino masses.  相似文献   

16.
Considering the mass splittings of three active neutrinos, we investigate how the properties of dark energy affect the cosmological constraints on the total neutrino mass $\sum {m}_{\nu }$ using the latest cosmological observations. In this paper, several typical dark energy models, including ΛCDM, wCDM, CPL, and HDE models, are discussed. In the analysis, we also consider the effects from the neutrino mass hierarchies, i.e. the degenerate hierarchy (DH), the normal hierarchy (NH), and the inverted hierarchy (IH). We employ the current cosmological observations to do the analysis, including the Planck 2018 temperature and polarization power spectra, the baryon acoustic oscillations (BAO), the type Ia supernovae (SNe), and the Hubble constant H0 measurement. In the ΛCDM+$\sum {m}_{\nu }$ model, we obtain the upper limits of the neutrino mass $\sum {m}_{\nu }\lt 0.123\,\mathrm{eV}$ (DH), $\sum {m}_{\nu }\lt 0.156\,\mathrm{eV}$ (NH), and $\sum {m}_{\nu }\lt 0.185\,\mathrm{eV}$ (IH) at the 95% C.L., using the Planck+BAO+SNe data combination. For the wCDM+$\sum {m}_{\nu }$ model and the CPL+$\sum {m}_{\nu }$ model, larger upper limits of $\sum {m}_{\nu }$ are obtained compared to those of the ΛCDM+$\sum {m}_{\nu }$ model. The most stringent constraint on the neutrino mass, $\sum {m}_{\nu }\lt 0.080\,\mathrm{eV}$ (DH), is derived in the HDE+$\sum {m}_{\nu }$ model. In addition, we find that the inclusion of the local measurement of the Hubble constant in the data combination leads to tighter constraints on the total neutrino mass in all these dark energy models.  相似文献   

17.
A supersymmetric model for accommodating the 17 KeV neutrino is proposed. The rank-two Majorana mass matrix for right-handed neutrinos can be obtained in a natural way. The neutrino spectrum is the same as that in the Glashow's model. The lifetime of the 17 KeV neutrino can satisfy the cosmological constraints.  相似文献   

18.
We report about stability conditions for static, spherically symmetric objects that share the essential features of mass varying neutrinos in cosmological scenarios. Compact structures of particles with variable mass are held together preponderantly by an attractive force mediated by a background scalar field. Their corresponding conditions for equilibrium and stability are given in terms of the ratio between the total mass-energy and the spherical lump radius, M/R. We show that the mass varying mechanism leading to lump formation can modify the cosmological predictions for the cosmological neutrino mass limits. Our study comprises Tolman–Oppenheimer–Volkoff solutions of relativistic objects with non-uniform energy densities. The results leave open some questions concerning stable regular solutions that, to an external observer, very closely reproduce the preliminary conditions to form Schwarzschild black holes.  相似文献   

19.
The origin of the hot phase of the early universe remains so far an unsolved puzzle. A viable option is entropy production through the decays of heavy Majorana neutrinos whose lifetimes determine the initial temperature. We show that baryogenesis and the production of dark matter are natural by-products of this mechanism. As is well known, the cosmological baryon asymmetry can be accounted for by leptogenesis for characteristic neutrino mass parameters. We find that thermal gravitino production then automatically yields the observed amount of dark matter, for the gravitino as the lightest superparticle and typical gluino masses. As an example, we consider the production of heavy Majorana neutrinos in the course of tachyonic preheating associated with spontaneous BL breaking. A quantitative analysis leads to constraints on the superparticle masses in terms of neutrino masses: For a light neutrino mass of 10−5 eV the gravitino mass can be as small as 200 MeV, whereas a lower neutrino mass bound of 0.01 eV implies a lower bound of 9 GeV on the gravitino mass. The measurement of a light neutrino mass of 0.1 eV would rule out heavy neutrino decays as the origin of entropy, visible and dark matter.  相似文献   

20.
Supernova (SN) neutrinos detected on the Earth are subject to the shock wave effects, the Mikheyev- Smirnov-Wolfenstein (MSW) effects, the neutrino collective effects and the Earth matter effects. Considering the recent experimental result about the large mixing angle 013 (-8.8°) provided by the Daya Bay Collaboration and applying the available knowledge for the neutrino conversion probability in the high resonance region of SN, PH , which is in the form of hypergeometric function in the case of large 813, we deduce the expression of PH taking into account the shock wave effects. It is found that PH is not zero in a certain range of time due to the shock wave effects. After considering all the four physical effects and scanning relevant parameters, we calculate the event numbers of SN neutrinos for the "Garehing" distribution of neutrino energy spectrum. From the numerical results, it is found that the behaviors of neutrino event numbers detected on the Earth depend on the neutrino mass hierarchy and neutrino spectrum parameters including the dimensionless pinching parameter βa (where a refers to neutrino flavor), the average energy 〈Ea〉, and the SN neutrino luminosities La. Finally, we give the ranges of SN neutrino event numbers that will be detected at the Daya Bay experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号