首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Summary Nitrosyl chloride has been treated with [Ni(PPh3)2X2] (X = Cl, Br, NCS or NO3) to obtain [Ni(PPh3)XCl]2 (X=Cl, Br, NCS or NO3) and [Ni(OPPh3)(SCN)Cl]2. The compounds obtained were characterised by analyses, infrared (including far i.r.) and visible spectral studies, magnetic moment and conductivity measurements and many chemical reactions. It is proposed that the compounds have a dimeric structure with a distorted tetrahedral environment around the nickel atom and chloro-bridges.  相似文献   

2.
On Chemistry and Crystal Chemistry of AcLnX6 Compounds (Ac = Th, U; Ln = Rare Earths; X = Br, I) . Reactions of AcX4 (Ac: Th, U; X: Br, I) with Rare Earth Dihalides LnX2 lead to AcLnX6 compounds with Ln = Sm, Eu, Dy, Tm, Yb. In the case of the other Rare Earth compounds redox reactions and formation of the trihalides of Ac and Ln occur. Thermodynamic calculations help to understand the reaction paths. Different structure types (β- and γ-ThSnI6-type) occur depending on the radius ratio of the ions. They are statistical or ordered substitutions variants of AB3 structures (BiI3- or PuBr3-type). The compounds UBI6 (B: Sr, Eu, Ba) crystallize in their own structure type. All these compounds and those having a β-ThSnI6 structure can be transformed to a γ-ThSnI6-type modification under pressure.  相似文献   

3.
Crystal Structure of the Hexaquomagnesiumhexahalogenodimercurates [Mg(OH2)6][Hg2X6] (X = Br, I) Hexaquodimercurates [Mg(OH2)6][Hg2X6] (X = Br, I) were obtained by crystallization from aqueous solutions of HgX2 and MgX2. The crystal structure of the monoclinic compounds consists of binuclear Hg2X6 anions and octahedral Mg(OH2)6 cations.  相似文献   

4.
Pb2PdX6 (X = Cl, Br) – Compounds with Elongated [PdX6] Octahedra In contradiction to published data new compounds in the systems PbX2—PdX2 (X = Cl, Br) with the formula Pb2PdCl6 (I) and Pb2PdBr6 (II) were found. These were synthesized by thermal treatment of the corresponding mixtures of PbX2 and PdX2 (X = Cl, Br). X-ray single crystal structure analysis shows isotypism of I and II, monoclinic, P21/c (No. 14), Z = 2, I: a = 9.037(2) Å, b = 6.224(1) Å, c = 8.162(1) Å, β = 90.31(7)β, II: a = 9.512(7) Å, b = 6.584(8) Å, c = 8.383(3) Å, β = 90.07(5)º. Strongly elongated PdX6 octahedra are found in the crystal structure. Additional characterisation of the compounds was done by DTA, IR/RAMAN spectra and 207Pb MAS NMR investigations. Remarcable low field shifts were found for 207Pb.  相似文献   

5.
The synthesis and the lattice constants of AB2X5 compounds with A = K, In, B = Sr, Sn, Pb and X = Cl, Br, I are reported. All compounds have either the monoclinic NH4Pb2Cl5 or the tetragonal NH4Pb2Br5 structure. For KPb2Br5 the former is shown to be the high temperature form and the latter is obtained under high pressure. It is shown that all known compounds of this family can clearly be separated with respect to their structure in a structure field diagram on the basis of the size relations A/X and B/X.  相似文献   

6.
All-solid-state rechargeable lithium-ion batteries (AS-LIBs) are attractive power sources for electrochemical applications due to their potentiality in improving safety and stability over conventional batteries with liquid electrolytes. Finding a solid electrolyte with high ionic conductivity and compatibility with other battery components is a key factor in raising the performance of AS-LIBs. In this work, we prepare argyrodite-type Li6PS5X (X = Cl, Br, I) using mechanical milling followed by annealing. X-ray diffraction characterization reveals the formation and growth of crystalline Li6PS5X in all cases. Ionic conductivity of the order of 7?×?10?4 S cm?1 in Li6PS5Cl and Li6PS5Br renders these phases suitable for AS-LIBs. Joint structure refinements using high-resolution neutron and laboratory X-ray diffraction provide insight into the influence of disorder on the fast ionic conductivity. Besides the disorder in the lithium distribution, it is the disorder in the S2?/Cl? or S2?/Br? distribution that we find to promote ion mobility, whereas the large I? cannot be exchanged for S2? and the resulting more ordered Li6PS5I exhibits only a moderate conductivity. Li+ ion migration pathways in the crystalline compounds are modelled using the bond valence approach to interpret the differences between argyrodites containing different halide ions.  相似文献   

7.
《中国化学会会志》2018,65(5):613-627
The general species (2,2′‐bpy)MX2 (M = Pd, Pt; X = Br, I) in a crystallization process results in an isomorphous convergence in P21/c. Yet, with polyfluorinated side chains, the general [5,5′‐(HCF2CF2CH2OCH2)2‐2,2′‐bpy]MX2 species proceeds to crystallize the isomorphous structures of 5 (M = Pt; X = I) and 6 (M = Pd; X = I) in P21/c only; structure 7 (M = Pt; X = Br) crystallizes in P21/c but is not isomorphous with 5 and 6 , and structure 8 (M = Pd; X = Br) forms differently in P–1. The causes making the system nonlinear are (1) the intramolecular CF2─HX(─M) hydrogen bonds found in 5–7 but not in 8, and (2) in response to the transition from I to Br, bifurcated [C─H]2 F ─C hydrogen bonds that are formed in 5 and 6 and bifurcated C─ H [F─C]2 hydrogen bonds in 7 . Additionally, the intramolecular CF2─HX(─M) hydrogen bonding from compounds 5–7 could be affirmed by the IR studies.  相似文献   

8.
The conformers of the monohalocyclohexasilanes, Si6H11X (X=F, Cl, Br or I) and the haloundecamethylcyclohexasilanes, Si6Me11X (X=F, Cl, Br or I) are investigated by DFT calculations employing the B3LYP density functional and 6‐31+G* basis sets for elements up to the third row, and SDD basis sets for heavier elements. Five minima are found for Si6H11X—the axial and equatorial chair conformers, with the substituent X either in an axial or equatorial position—and another three twisted structures. The equatorial chair conformer is the global minimum for the X=Cl, Br and I, the axial chair for X=F. The barrier for the ring inversion is ~13 kJ mol?1 for all four compounds. Five minima closely related to those of Si6H11X are found for Si6Me11X. Again, the equatorial chair is the global minimum for X=Cl, Br and I, and the axial chair for X=F. Additionally, two symmetrical boat conformers are found as local minima on the potential energy surfaces for X=F, Cl and Br, but not for X=I. The barrier for the ring inversion is ~14–16 kJ mol?1 for all compounds. The conformational equilibria for Si6Me11X in toluene solution are investigated using temperature dependent Raman spectroscopy. The wavenumber range of the stretching vibrations of the heavy atoms X and Si from 270–370 cm?1 is analyzed. Using the van′t Hoff relationship, the enthalpy differences between axial and equatorial chair conformers (Hax?Heq.) are 1.1 kJ mol?1 for X=F, and 1.8 to 2.8 kJ mol?1 for X=Cl, Br and I. Due to rapid interconversion, only a single Raman band originating from the “averaged” twist and boat conformers could be observed. Generally, reasonable agreement between the calculated relative energies and the experimentally determined values is found.  相似文献   

9.
Preparation and Crystal Structures of Dipyridiniomethane Monohalogenohydro-closo-Dodecaborates(2?), [(C5H5N)2CH2][B12H11X]; X = Cl, Br, I [B12H12]2? reacts with dihalogenomethanes CH2X2 in presence of trifluoro acetic acid, yielding the monohalogenododecaborates [B12H11X]2? (X = Cl, Br, I), which are separated by ion exchange chromatography on diethylaminoethyl(DEAE) cellulose from the starting compound and higher halogenated products. The X-ray structure determinations of [(C5H5N)2CH2][B12H11Cl] · 2(CH3)2SO (orthorhombic, space group Pnma, a = 17.351(6), b = 16.034(5), c = 9.659(2) Å, Z = 4) and of the isotypic bromo and iodo compounds [(C5H5N)2CH2][B12H11X] (monoclinic, space group P21/n, Z = 4; for X = Br: a = 7.339(2), b = 15.275(3), c = 16.761(4) Å, β = 96.80(2)°; for X = I: a = 7.4436(8), b = 15.3510(8), c = 16.9213(16) Å, ß = 97.326(7)°) exhibit crystal lattices build up by columns of substituted boron clusters and angular dications [(C5H5N)2CH2]2+ orientated along the shortest axis which are assembled to alternating layers.  相似文献   

10.
(CF3)2EPH2 (E = P,As) may be prepared in high yield by the cleavage of M-P bonds in compounds of the type R3MPH2 (M = Si, Ge, Sn) with (CF3)2EX (X = Cl, Br, I). The direction of bond fission depends on X and on the reaction temperature. These new compounds may also be obtained, but in lower yield, by the reaction of LiAl(PH2)4 with (CF3)2EX. Application of the principle of this reaction to other R′2EX compounds [(CH3)2PCl, (CH3)2AsI, F2PX (X = Br, I)] has been investigated. The IR and NMR spectra of the new compounds are reported.  相似文献   

11.
Superconductivity in Rare Earth Metal Carbide Halides of the Type SE2X2C2 The metallic nature of the carbide halides Y2X2C2 is due to Y? C covalency. The superconductivity of the compounds is attributed to a pairwise attraction of conduction electrons by C2-π* states at the Fermi level. The hypothesis is followed by experiments and band structure calculations. – Neutron powder diffraction reveals d(C? C) = 128(1) pm for Y2Br2C2. X-ray single crystal investigations on Y2Br2C2 and Y2I1.5Br0.5C2 show a characteristic variation of the coordination of the C2 unit. Systematic changes of the average halide radius in Y2(X,X′)2C2 (X,X′ = Br, Cl I, Cl and I, Br) lead to a monotonic increase of Tc = 2.3 K (X = Cl) via Tc = 5.05 K (X = Br) to a maximum Tc = 11.2 K for Y2I1.6Br0.4C2. No isotope effect for 12C/13C could be detected. Photoelectron spectra of Y2Br2C2 (excitation energies between 40 and 140 eV) are compared with the results of band structure calculations (LMTO, E.H.). The electronic structure reveals two bands crossing the Fermi level. One of them has C2-π*-Y-dxz,yz character and exhibits a saddle-point at EF. The other intersects the Fermi level with large dispersion and has exclusively Y-d character at the crossing point. The results are discussed with respect to theoretical models (van Hove singularity, local pairs and itinerant electrons).  相似文献   

12.
Organometallic Compounds of Copper. XVIII. On the Reaction of the Alkyne Copper(I) Complexes [CuX(S‐Alkyne)] (X = Cl, Br, I; S‐Alkyne = 3,3,6,6‐Tetramethyl‐1‐thiacyclohept‐4‐yne) with the Phosphanes PMe3 and Ph2PCH2CH2PPh2 (dppe) The alkyne copper(I) halide complexes [CuX(S‐Alkyne)]n ( 2 ) ( 2 a : X = Cl, 2 b : X = Br, 2 c : X = I; S‐Alkyne = 3,3,6,6‐tetramethyl‐1‐thiacyclohept‐4‐yne; n = 2, ∞) add the phosphanes PMe3 and Ph2PCH2CH2PPh2 (dppe) to form the mono‐ and dinuclear copper compounds [(S‐Alkyne)CuX(PMe3)] ( 6 ) ( 6 a : X = Cl, 6 b : X = Br) and [(S‐Alkyne)CuX(μ‐dppe)CuX(S‐Alkyne)] ( 7 a : X = Cl, 7 b : X = Br, 7 c : X = I), respectively. By‐product in the reaction of 2 a with dppe is the tetranuclear complex [(S‐Alkyne)Cu(μ‐X)2Cu(μ‐dppe)2Cu(μ‐X)2Cu(S‐Alkyne)] ( 8 ). In case of the compounds 7 prolonged reaction times yield the alkyne‐free dinuclear copper complexes [Cu2X2(dppe)3] ( 9 ) ( 9 a : X = Cl, 9 b : X = Br, 9 c : X = I)). X‐ray diffraction studies were carried out with the new compounds 6 a , 6 b , 7 b , 8 , and 9 c .  相似文献   

13.
Crystal Structures and Phase Transformations of Cesium Trihalogenogermanates CsGeX3(X = Cl, Br, I) The compounds CsGeX3 (X ? Cl, Br, I) have been obtained by reactions of Ge(OH)2 with CsX in aquaeous HX solutions. The thermal behavior has been studied by X-ray diffraction. Raman spectroscopy, and DTA/DSC. The compounds are dimorph. The low temperature modifications L-CsGeX3 show a rhomboedric deformed perovskite type structure. The high temperature phases H-CsGeX3 form the cubic perovskite type structure. The reversible phase transitions are interpreted as a result of position changes of the Ge atoms in the H-forms (Order-Disorder transitions). The transition temperatures increase in the sequence CsGeCl3 (155°C), CsGeBr3 (238°C), CsGeI3 (277°C).  相似文献   

14.
Reaction of MX2 (M = Cd, Zn; X = Cl, Br, I) with 2-cyanopyrazine leads to the formation of compounds with the composition CdX2(2-cyanopyrazine)2 (X = Cl; CdCl , X = Br; CdBr and X = I; CdI ) and ZnX2(2-cyanopyrazine)2 (X = Cl; ZnCl , X = Br; ZnBr and X = I; ZnI/I ). In the crystal structures of the Cd compounds and in ZnCl , the metal cations are octahedrally coordinated and are linked into chains by the halide anions via common edges. In contrast, in the crystal structures of ZnBr and ZnI/I the metal cations are tetrahedrally coordinated into discrete complexes. Further investigations show that a second modification of ZnCl2(2-cyanopyrazine)2 exists ( ZnI/II ), which is formed by kinetic control. The thermal properties of the 2-cyanopyrazine rich compounds were investigated by TG-DTA and temperature dependent XRPD measurements. Upon heating the Cd compounds, all 2-cyanopyrazine ligands are removed in a single step with no indication of the formation of a 2-cyanopyrazine deficient phase. A similar behavior is observed for ZnI , whereas for ZnCl and ZnBr , TG-DTA measurements suggest the formation of a 2-cyanopyrazine deficient phase that, in case of ZnBr , cannot be isolated and, for ZnCl , cannot be obtained pure. The emission of these compounds is shifted from the blue to orange depending on the crystal structure and the nature of the halide anion.  相似文献   

15.
Gas‐phase anionic reactions X? + CH3SY (X, Y = F, Cl, Br, I) have been investigated at the level of B3LYP/6‐311+G (2df,p). Results show that the potential energy surface (PES) of gas‐phase reactions X? + CH3SY (X, Y = Cl, Br, I) has a quadruple‐well structure, indicating an addition–elimination (A–E) pathway. The fluorine behaves differently in many respects from the other halogens and the reactions F? + CH3SY (Y = F, Cl, Br, I) correspond to deprotonation instead of substitution. The gas‐phase reactions X? + CH3SF (X = Cl, Br, I), however, follow an A–E pathway other than the last two out going steps (COM2 and PR) that proceeds via a deprotonation. The polarizable continuum model (PCM) has been used to evaluate the solvent effects on the energetics of the reactions X? + CH3SY (X, Y = Cl, Br, I). The PES is predicted to be unimodal in the solvents of high polarity. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007  相似文献   

16.
Equilibrium Measurements with the Systems PdX2.f + Al2X6.g = PdAl2X8.g; (X = Cl, Br, I) The equilibria mentioned on the title have been measured by a simple flow method. In contrast with the data measured with X = Cl or Br, for X = I only less accurate, informing values could be obtained. Even so differences in the stability of chloride and bromide complexes on one hand and iodide complexes on the other hand can be traced back on differences in the structures of the solid dihalides.  相似文献   

17.
The reaction of CpFe(CO)2X (X = Cl, Br, I) with SbY5 (Y = F, Cl) in toluene leads to the cationic, halogen‐bridged compounds [{Cp(CO)2Fe}2X]SbY6 ( 1 – 6 ). The halide of CpFe(CO)2X is eliminated by the Lewis acid SbY5, and the fragment “CpFe(CO)2+” reacts with further CpFe(CO)2X to form the halogen bridge between both the organometallic substituents. The exclusive formation of the counter anion SbY6 is caused by the oxidizing action of the antimony pentahalides, by which SbY3 and the interhalogens XY are always obtained. The compounds have been characterized by their NMR‐, IR‐ and Mass spectra, the compounds 1 – 3 and 6 additionally by single crystal structure analyses. They show decreasing bond angles Fe–X–Fe following the range Cl → Br → I and the VSEPR concept; the two CpFe(CO)2 groups are staggered with the dihedral angle Cp(centre)–Fe–Fe–Cp(centre) of about 160°.  相似文献   

18.
Trigonal Planar CuX3-Groups in Cu2Mo6X14, X = Cl, Br, I Cu2Mo6Cl14 (I), Cu2Mo6Br14 (II) and Cu2Mo6I14 (III) were synthesized by thermal treatment of corresponding mixtures of copper(I) and molybdenum(II) halides. The crystal structures were determined by single crystal X-ray analyses. I and II show isotypism, cubic, Pn3 (no. 201, sec. setting), Z = 4, I: a = 12.772(3) Å, II: a = 13.350(2) Å. III shows a new structural type, orthorhombic, Pbca (No. 61), Z = 4, a = 16.058(3) Å, b = 10.643(2) Å, c = 16.963(3) Å. Trigonal planar CuX3 units were found in I? III. Structural behaviour relations are discussed, especially with regard to ionic conductivity.  相似文献   

19.
Colourless crystals grow in the colder part of a glass ampoule when AlX3·5NH3 with X = Cl, Br, I is heated for 3—6 d to 330 °C (Cl), 350 °C (Br) and 400 °C (I), respectively. The chloride forms hexagonal prisms while the bromide and iodide were obtained as a bunch of lancet‐like crystals. The chloride and bromide crystallize isotypic whereas the iodide has an own structure type. All three are related to the motif of the K2PtCl6 type. So the formula of the ammoniates may be written as X2[Al(NH3)5X] ≙ [Al(NH3)5X]X2. The compounds are characterized by the following crystallographic data AlCl3·5NH3: Pnma, Z = 4, a = 13.405 (1)Å, b = 10.458 (1)Å, c = 6.740 (2)Å AlBr3·5NH3: Pnma, Z = 4, a = 13.808 (2)Å, b = 10.827 (1)Å, c = 6.938 (1)Å AlI3·5NH3: Cmcm, Z = 4, a = 9.106 (2)Å, b = 11.370 (2)Å, c = 11.470 (2)Å For the chloride and the bromide the structure determinations were successful including hydrogen positions. All three compounds contain octahedral molecular cations [Al(NH3)5X]2+ located in distorted cubes formed by the remaining 2X ions. The orientation of the octahedra to each other is clearly different for those with X = Cl, Br in comparison to the one with X = I.  相似文献   

20.
Functionally substituted triorganotin halides V–IX of type R2Sn(X)(CH2)2P(O)PhR′ (R = Me, t-Bu; Rt? = OEt, t-Bu; X = Cl, Br) have been synthesized by halogen cleavage of the corresponding tetraorganotin compounds R2R2Sn(CH2)2P(O)PhR′ (R2 = Me or Ph), I–IV. The solid state structure of Me2Sn (Br) (CH2)2P(O)PhBu-t (IX), determined by X-ray diffraction, shows a distorted trigonal-bipyramidal structure at the tin atom, with intramolecular coordination of the PO group. Spectroscopic data are in agreement with such a structure in solution for compounds V–IX. Upon varying the temperature, concentration or solvent in solutions of compounds V–IX a stereoisomerization is observed. On the basis of NMR 1H, 13C, 31P, 119Sn), IR and conductivity studies, it is suggested that this stereoisomerization involves a hexacoordinated transition state at the tin atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号