首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 15 毫秒
1.
Conventional solid electrolyte frameworks typically consist of anions such as sulphur, oxygen, chlorine, and others, leading to inherent limitations in their properties. Despite the emergence of sulphide, oxide, and halide-based solid electrolytes for all-solid-state batteries, their utilization is hampered by issues, including the evolution of H2S gas, the need for expensive elements, and poor contact. Here, we first introduce Prussian Blue analogue (PBA) open-framework structures as a solid electrolyte that demonstrates appreciable Na+ conductivity (>10−2mS cm−1). We delve into the relationship between Na+ conductivity and the lattice parameter of N-coordinated transition metal, which is attributed to the reduced interaction between Na+ and the framework, corroborated by the distribution of relaxation times and density functional theory calculations. Among the five PBAs studied, Mn-PBA have exhibited the highest Na+ conductivity of 9.1×10−2mS cm−1. Feasibility tests have revealed that Mn-PBA have maintained a cycle retention of 95.1 % after 80cycles at 30 °C and a C-rate of 0.2C. Our investigation into the underlying mechanisms that play a significant role in governing the conductivity and kinetics of these materials contributes valuable insights for the development of alternative strategies to realize all-solid-state batteries.  相似文献   

2.
Deep sodium extraction/insertion of sodium cathodes usually causes undesired Jahn–Teller distortion and phase transition, both of which will reduce structural stability and lead to poor long-cycle reliability. Here we report a zero-strain P2- Na2/3Li1/6Co1/6Mn2/3O2 cathode, in which the lithium/cobalt substitution contributes to reinforcing the host structure by reducing the Mn3+/Mn4+ redox, mitigating the Jahn–Teller distortion, and minimizing the lattice change. 94.5 % of Na+ in the unit structure can be reversibly cycled with a charge cut-off voltage of 4.5 V (vs. Na+/Na). Impressively, a solid-solution reaction without phase transitions is realized upon deep sodium (de)intercalation, which poses a minimal volume deviation of 0.53 %. It attains a high discharge capacity of 178 mAh g−1, a high energy density of 534 Wh kg−1, and excellent capacity retention of 95.8 % at 1 C after 250 cycles.  相似文献   

3.
Na superionic conductor (NASICON) structured cathode materials with robust structural stability and large Na+ diffusion channels have aroused great interest in sodium-ion batteries (SIBs). However, most of NASICON-type cathode materials exhibit redox reaction of no more than three electrons per formula, which strictly limits capacity and energy density. Herein, a series of NASICON-type Na3+xMnTi1−xVx(PO4)3 cathode materials are designed, which demonstrate not only a multi-electron reaction but also high voltage platform. With five redox couples from V5+/4+ (≈4.1 V), Mn4+/3+ (≈4.0 V), Mn3+/2+ (≈3.6 V), V4+/3+ (≈3.4 V), and Ti4+/3+ (≈2.1 V), the optimized material, Na3.2MnTi0.8V0.2(PO4)3, realizes a reversible 3.2-electron redox reaction, enabling a high discharge capacity (172.5 mAh g−1) and an ultrahigh energy density (527.2 Wh kg−1). This work sheds light on the rational construction of NASICON-type cathode materials with multi-electron redox reaction for high-energy SIBs.  相似文献   

4.
Hard carbon (HC) is a promising anode material for sodium-ion batteries, yet still suffers from low initial Coulombic efficiency (ICE) and unstable solid electrolyte interphase (SEI). Herein, sodium diphenyl ketone (Na-DK) is applied to realize dual-function presodiation for HC anodes. It compensates the irreversible Na uptake at the oxygen-containing functional groups and reacts with carbon defects of five/seven-membered rings for quasi-metallic sodium in HC. The as-formed sodium induces robust NaF-rich SEI on HC in 1.0 M NaPF6 in diglyme, favoring the interfacial reaction kinetics and stable Na+ insertion and extraction. This renders the presodiated HC (pHC) with high ICE of ≈100 % and capacity retention of 82.4 % after 6800 cycles. It is demonstrated to couple with Na3V2(PO4)3 cathodes in full cells to show high capacity retention of ≈100 % after 700 cycles. This work provides in-depth understanding of chemical presodiation and a new strategy for highly stable sodium-ion batteries.  相似文献   

5.
Li-O2 battery (LOB) is a promising “beyond Li-ion” technology with ultrahigh theoretical energy density (3457 Wh kg−1), while currently impeded by the sluggish cathodic kinetics of the reversible gas-solid reaction between O2 and Li2O2. Despite many catalysts are developed for accelerating the conversion process, the lack of design guidance for achieving high performance makes catalysts exploring aleatory. The Sabatier principle is an acknowledged theory connecting the scaling relationship with heterogeneous catalytic activity, providing a tradeoff strategy for the topmost performance. Herein, a series of catalysts with wide-distributed d-band centers (i.e., wide range of adsorption strength) are elaborately constructed via high-entropy strategy, enabling an in-depth study of the Sabatier relations in electrocatalysts for LOBs. A volcano-type correlation of d-band center and catalytic activity emerges. Both theoretical and experimental results indicate that a moderate d-band center with appropriate adsorption strength propels the catalysts up to the top. As a demonstration of concept, the LOB using FeCoNiMnPtIr as catalyst provides an exceptional energy conversion efficiency of over 80 %, and works steadily for 2000 h with a high fixed specific capacity of 4000 mAh g−1. This work certifies the applicability of Sabatier principle as a guidance for designing advanced heterogeneous catalysts assembled in LOBs.  相似文献   

6.
Transition-metal phosphides (TMPs) as typical conversion-type anode materials demonstrate extraordinary theoretical charge storage capacity for sodium ion batteries, but the unavoidable volume expansion and irreversible capacity loss upon cycling represent their long-standing limitations. Herein we report a stress self-adaptive structure with ultrafine FeP nanodots embedded in dense carbon microplates skeleton (FeP@CMS) via the spatial confinement of carbon quantum dots (CQDs). Such an architecture delivers a record high specific capacity (778 mAh g−1 at 0.05 A g−1) and ultra-long cycle stability (87.6 % capacity retention after 10 000 cycles at 20 A g−1), which outperform the state-of-the-art literature. We decode the fundamental reasons for this unprecedented performance, that such an architecture allows the spontaneous stress transfer from FeP nanodots to the surrounding carbon matrix, thus overcomes the intrinsic chemo-mechanical degradation of metal phosphides.  相似文献   

7.
Lithium-sulphur (Li−S) batteries are a promising alternative power source, as they can provide a higher energy density than current lithium-ion batteries. Porous materials are often used as cathode materials as they can act as a host for sulphur in such batteries. Recently, covalent organic frameworks (COFs) have also been used, however they typically suffer from stability issues, resulting in limited and thus insufficient durability under practical conditions and applications. Herein, we report the synthesis of a crystalline and porous imine-linked triazine-based dimethoxybenzo-dithiophene functionalized COF (TTT-DMTD) incorporating high-density redox sites. The imine linkages were further post-synthetically transformed to yield a robust thiazole-linked COF (THZ-DMTD) by utilizing a sulphur-assisted chemical conversion method, while maintaining the crystallinity. As a synergistic effect of its high crystallinity, porosity and the presence of redox-active moieties, the thiazole-linked THZ-DMTD exhibited a high capacity and long-term stability (642 mAh g−1 at 1.0 C; 78.9 % capacity retention after 200 cycles) when applied as a cathode material in a Li−S battery.  相似文献   

8.
With a theoretical capacity of 847 mAh g−1, Sn has emerged as promising anode material for sodium-ion batteries (SIBs). However, enormous volume expansion and agglomeration of nano Sn lead to low Coulombic efficiency and poor cycling stability. Herein, an intermetallic FeSn2 layer is designed via thermal reduction of polymer-Fe2O3 coated hollow SnO2 spheres to construct a yolk-shell structured Sn/FeSn2@C. The FeSn2 layer can relieve internal stress, avoid the agglomeration of Sn to accelerate the Na+ transport, and enable fast electronic conduction, which endows quick electrochemical dynamics and long-term stability. As a result, the Sn/FeSn2@C anode exhibits high initial Coulombic efficiency (ICE=93.8 %) and a high reversible capacity of 409 mAh g−1 at 1 A g−1 after 1500 cycles, corresponding to an 80 % capacity retention. In addition, NVP//Sn/FeSn2@C sodium-ion full cell shows outstanding cycle stability (capacity retaining rate of 89.7 % after 200 cycles at 1 C).  相似文献   

9.
Aqueous rechargeable batteries are prospective candidates for large-scale grid energy storage. However, traditional anode materials applied lack acid-alkali co-tolerance. Herein, we report a covalent organic framework containing pyrazine (C=N) and phenylimino (−NH−) groups (HPP-COF) as a long-cycle and high-rate anode for both acidic and alkaline batteries. The HPP-COF′s robust covalent linkage and the hydrogen bond network between −NH− and water molecules collectively improve the acid-alkaline co-tolerance. More importantly, the hydrogen bond network promotes the rapid transport of H+/OH by the Grotthuss mechanism. As a result, the HPP-COF delivers a superior capacity and cycle stability (66.6 mAh g−1@ 30 A g−1, over 40000 cycles in 1 M H2SO4 electrolyte; 91.7 mAh g−1@ 100 A g−1, over 30000 cycles @ 30 A g−1 in 1 M NaOH electrolyte). The work opens a new direction for the structural design and application of COF materials in acidic and alkaline batteries.  相似文献   

10.
The development of flexible zinc-air batteries (FZABs) has attracted broad attention in the field of wearable electronic devices. Gel electrolyte is one of the most important components in FZABs, which is urgent to be optimized to match with Zn anode and adapt to severe climates. In this work, a polarized gel electrolyte of polyacrylamide-sodium citric (PAM-SC) is designed for FZABs, in which the SC molecules contain large amount of polarized −COO functional groups. The polarized −COO groups can form an electrical field between gel electrolyte and Zn anode to suppress Zn dendrite growth. Besides, the −COO groups in PAM-SC can fix H2O molecules, which prevents water from freezing and evaporating. The polarized PAM-SC hydrogel delivers a high ionic conductivity of 324.68 mS cm−1 and water retention of 96.85 % after being exposed for 96 h. FZABs with the PAM-SC gel electrolyte exhibit long cycling life of 700 cycles at −40 °C, showing the application prospect under extreme conditions.  相似文献   

11.
Aluminum-ion batteries (AIBs) are a promising candidate for large-scale energy storage due to the abundant reserves, low cost, good safety, and high theoretical capacity of Al. However, AIBs with inorganic positive electrodes still suffer from sluggish kinetics and structural collapse upon cycling. Herein, we propose a novel p-type poly(vinylbenzyl-N-phenoxazine) (PVBPX) positive electrode for AIBs. The dual active sites enable PVBPX to deliver a high capacity of 133 mAh g−1 at 0.2 A g−1. More impressively, the expanded π-conjugated construction, insolubility, and anionic redox chemistry without bond rearrangement of PVBPX for AIBs contribute to an amazing ultra-long lifetime of 50000 cycles. The charge storage mechanism is that the AlCl4 ions can reversibly coordinate/dissociate with the N and O sites in PVBPX sequentially, which is evidenced by both experimental and theoretical results. These findings establish a foundation to advance organic AIBs for large-scale energy storage.  相似文献   

12.
The development of water-soluble redox-active molecules with high potentials is one of the effective ways to enhance the energy density of aqueous organic flow batteries (AOFBs). Herein, a series of promising N-substituted benzidine analogues as water-soluble catholyte candidates with controllable redox potentials (0.78–1.01 V vs. standard hydrogen electrode (SHE)) were obtained by the molecular engineering of aqueous irreversible benzidines. Theoretical calculations reveal that the redox potentials of these benzidine derivatives in acidic solution are determined by their electronic structure and alkalinity. Among these benzidine derivatives, N,N,N′,N′-tetraethylbenzidine(TEB) shows both high redox potential (0.82 V vs. SHE) and good solubility (1.1 M). Pairing with H4[Si(W3O10)4] anolyte, the cell displayed discharge capacity retention of 99.4 % per cycle and a high coulombic efficiency (CE) of ∼100 % over 1200 cycles. The stable discharge capacity of 41.8 Ah L−1 was achieved at the 1.0 M TEB catholyte with a CE of 97.2 % and energy efficiency (EE) of 91.2 %, demonstrating that N-substituted benzidines could be promising for AOFBs.  相似文献   

13.
A key challenge faced by organic electrodes is how to promote the redox reactions of functional groups to achieve high specific capacity and rate performance. Here, we report a two‐dimensional (2D) microporous covalent–organic framework (COF), poly(imide‐benzoquinone), via in situ polymerization on graphene (PIBN‐G) to function as a cathode material for lithium‐ion batteries (LIBs). Such a structure favors charge transfer from graphene to PIBN and full access of both electrons and Li+ ions to the abundant redox‐active carbonyl groups, which are essential for battery reactions. This enables large reversible specific capacities of 271.0 and 193.1 mAh g?1 at 0.1 and 10 C, respectively, and retention of more than 86 % after 300 cycles. The discharging/charging process successively involves 8 Li+ and 2 Li+ in the carbonyl groups of the respective imide and quinone groups. The structural merits of PIBN‐G will trigger more investigations into the designable and versatile COFs for electrochemistry.  相似文献   

14.
Tin is a promising anode candidate for next‐generation lithium‐ion batteries with a high energy density, but suffers from the huge volume change (ca. 260 %) upon lithiation. To address this issue, here we report a new hierarchical tin/carbon composite in which some of the nanosized Sn particles are anchored on the tips of carbon nanotubes (CNTs) that are rooted on the exterior surfaces of micro‐sized hollow carbon cubes while other Sn nanoparticles are encapsulated in hollow carbon cubes. Such a hierarchical structure possesses a robust framework with rich voids, which allows Sn to alleviate its mechanical strain without forming cracks and pulverization upon lithiation/de‐lithiation. As a result, the Sn/C composite exhibits an excellent cyclic performance, namely, retaining a capacity of 537 mAh g?1 for around 1000 cycles without obvious decay at a high current density of 3000 mA g?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号