首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of highly active and stable reversible oxygen electrocatalysts is crucial for improving the efficiency of metal-air battery devices. Herein, an efficient liquid exfoliation strategy was designed for producing silk-like FeS2/NiS2 hybrid nanocrystals with enhanced reversible oxygen catalytic performance that displayed excellent properties for Zn-air batteries. Because of the unique silk-like morphology and interface nanocrystal structure, they can catalyze the oxygen evolution reaction (OER) efficiently with a low overpotential of 233 mV at j = 10 mA cm?2. This is an improvement from the recently reported catalysts in 1.0 M KOH. Meanwhile, the oxygen reduction reaction (ORR) activity of the silk-like FeS2/NiS2 hybrid nanocrystals showed an onset potential of 911 mV and a half-wave potential of 640 mV. In addition, the reversible oxygen electrode activity of the silk-like FeS2/NiS2 hybrid nanocrystals was calculated to be 0.823 V, based on the potential of the OER and ORR. Further, the homemade rechargeable Zn-air batteries using FeS2/NiS2 hybrid nanocrystals as the air-cathode displayed a high open-circuit voltage of 1.25 V for more than 17 h and an excellent rechargeable performance for 25 h. The solid Zn-air batteries exhibited an excellent rechargeable performance for 15 h. This study provided a new method for designing interface nanocrystals with a unique morphology for efficient multifunctional electrocatalysts in electrochemical reactions and renewable energy devices.  相似文献   

2.
Water electrolysis for H2 production is restricted by the sluggish oxygen evolution reaction (OER). Using the thermodynamically more favorable hydrazine oxidation reaction (HzOR) to replace OER has attracted ever-growing attention. Herein, we report a twisted NiCoP nanowire array immobilized with Ru single atoms (Ru1−NiCoP) as superior bifunctional electrocatalyst toward both HzOR and hydrogen evolution reaction (HER), realizing an ultralow working potential of −60 mV and overpotential of 32 mV for a current density of 10 mA cm−2, respectively. Inspiringly, two-electrode electrolyzer based on overall hydrazine splitting (OHzS) demonstrates outstanding activity with a record-high current density of 522 mA cm−2 at cell voltage of 0.3 V. DFT calculations elucidate the cooperative Ni(Co)−Ru−P sites in Ru1−NiCoP optimize H* adsorption, and enhance adsorption of *N2H2 to significantly lower the energy barrier for hydrazine dehydrogenation. Moreover, a self-powered H2 production system utilizing OHzS device driven by direct hydrazine fuel cell (DHzFC) achieve a satisfactory rate of 24.0 mol h−1 m−2.  相似文献   

3.
Cobalt imidazolate frameworks are classical electrocatalysts for the oxygen evolution reaction (OER) but suffer from the relatively low activity. Here, a non‐3d metal modulation strategy is presented for enhancing the OER activity of cobalt imidazolate frameworks. Two isomorphous frameworks [Co4(MO4)(eim)6] (M=Mo or W, Heim=2‐ethylimidazole) having Co(eim)3(MO4) units and high water stabilities were designed and synthesized. In different neutral media, the Mo‐modulated framework coated on a glassy carbon electrode shows the best OER performances (1 mA cm?2 at an overpotential of 210 mV in CO2‐saturated 0.5 m KHCO3 electrolyte and 2/10/22 mA cm?2 at overpotential of 388/490/570 mV in phosphate buffer solution) among non‐precious metal catalysts and even outperforms RuO2. Spectroscopic measurements and computational simulations revealed that the non‐3d metals modulate the electronic structure of Co for optimum reactant/product adsorption and tailor the energy of rate‐determining step to a more moderate value.  相似文献   

4.
Developing efficient electrocatalysts for the oxygen evolution reaction (OER) is paramount to the energy conversion and storage devices. However, the structural complexity of heterogeneous electrocatalysts makes it a great challenge to elucidate the dynamic structural evolution and OER mechanisms. Here, we develop a controllable atom-trapping strategy to extract isolated Mo atom from the amorphous MoOx-decorated CoSe2 (a-MoOx@CoSe2) pre-catalyst into Co-based oxyhydroxide (Mo-CoOOH) through an ultra-fast self-reconstruction process during the OER process. This conceptual advance has been validated by operando characterizations, which reveals that the initially rapid Mo leaching can expedite the dynamic reconstruction of pre-catalyst, and simultaneously trap Mo species in high oxidation state into the lattice of in situ generated CoOOH support. Impressively, the OER kinetics of CoOOH has been greatly accelerated after the reverse decoration of Mo species, in which the Mo-CoOOH affords a markedly decreased overpotential of 297 mV at the current density of 100 mA cm−2. Density functional theory (DFT) calculations demonstrate that the Co species have been greatly activated via the effective electron coupling with Mo species in high oxidation state. These findings open new avenues toward directly synthesizing atomically dispersed electrocatalysts for high-efficiency water splitting.  相似文献   

5.
Electrochemical water splitting is a promising approach for producing sustainable and clean hydrogen. Typically, high valence state sites are favorable for oxidation evolution reaction (OER), while low valence states can facilitate hydrogen evolution reaction (HER). However, here we proposed a high valence state of Co3+ in Ni9.5Co0.5−S−FeOx hybrid as the favorable center for efficient and stable HER, while structural analogues with low chemical states showed much worse performance. As a result, the Ni9.5Co0.5−S−FeOx catalyst could drive alkaline HER with an ultra-low overpotential of 22 mV for 10 mA cm−2, and 175 mV for 1000 mA cm−2 at the industrial temperature of 60 °C, with an excellent stability over 300 h. Moreover, this material could work for both OER and HER, with a low cell voltage being 1.730 V to achieve 1000 mA cm−2 for overall water splitting at 60 °C. X-ray absorption spectroscopy (XAS) clearly identified the high valence Co3+ sites, while in situ XAS during HER and theoretical calculations revealed the favorable electron capture at Co3+ and suitable H adsorption/desorption energy around Co3+, which could accelerate the HER. The understanding of high valence states to drive reductive reactions may pave the way for the rational design of energy-related catalysts.  相似文献   

6.
The development of high-performance non-precious metal-based robust bifunctional electrocatalyst for both hydrogen evolution reaction(HER) and oxygen evolution reactions(OER) in alkaline media is essential for the electrochemical overall water splitting technologies. Herein, we demonstrate that the HER/OER performance of Co Se2 can be significantly enhanced by tuning the 3d-orbital electron filling degree through Mo doping. Both density functional theory(DFT) calculations and experime...  相似文献   

7.
It is still an enormous challenge to develop non-precious electrocatalysts through low-cost and efficient methods. To fulfill highly active site exposure and optimized intrinsic activity, the 2-dimensional NiS2/CeO2 with unique heterostructure and abundant sulfur and oxygen vacancies (v-NiS2/CeO2 HS) was prepared by solvothermal reaction and annealing. The density functional theory calculations illustrate that the materials with both heterostructure and vacancies simultaneously have a positive effect on promoting the kinetics of oxygen evolution reaction and hydrogen evolution reaction and optimizing the adsorption energy of hydrogen. As a result, v-NiS2/CeO2 HSs deliver the current density of 10 mA/cm2 at the low overpotential of 271 mV for oxygen evolution reaction and the overpotential required by v-NiS2/CeO2 HSs for hydrogen evolution reaction is 123 mV (at 10 mA/cm2). The v-NiS2/CeO2 HSs demand a lower cell voltage with 1.64 V (at 10 mA/cm2) toward overall water splitting. These results provide a theoretical and practical direction for the development of low-cost, earth-abundant electrocatalysts.  相似文献   

8.
An dual electronic and architectural engineering strategy is a good way to rationally design earth-abundant and highly efficient electrocatalysts of the oxygen evolution reaction (OER) for sustainable hydrogen-based energy devices. Here, a Ce-doped Co9S8 core–shell nanoneedle array (Ce−Co9S8@CC) supported on a carbon cloth has been designed and developed to accelerate the sluggish kinetics of the OER. Profiting from valance alternative Ce doping, a fine core–shell structure and vertically aligned nanoneedle arrayed architecture, Ce−Co9S8@CC integrates modulated electronic structure, highly exposed active sites, and multidimensional mass diffusion channels; together, these afford a favorable catalyzed OER. Ce−Co9S8@CC exhibits remarkable performance in the OER in an alkaline medium, where the overpotential requires only 242 mV to deliver a current density of 10 mA cm−2 for the OER; this is 70 mV superior to that of Ce-free Co9S8 catalyst and other counterparts. Good stability and impressive selectivity (nearly 100 % Faradic efficiency) are also demonstrated. When integrated into a two-electrode OER//HER electrolyzer, the as-prepared Ce−Co9S8@CC displays a low operation potential of 1.54 V at 10 mA cm−2 and long-term stability, thus demonstrating great potential for economical water electrolysis.  相似文献   

9.
Thin film of amorphous tungsten‐doped cobalt oxide (W:CoO) was successfully grown on a conducting electrode via an electrochemical oxidation process employing a [Co(WS4)2]2? deposition bath. The W:CoO catalyst displays an attractive performance for the oxygen evolution reaction in an alkaline solution. In an NaOH solution of pH 13, W:CoO operates with a moderate onset overpotential of 230 mV and requires 320 mV overpotential to generate a catalytic current density of 10 mA cm?2. A low Tafel slope of 45 mV decade?1 was determined, indicating a rapid O2‐evolving kinetics. The as‐prepared W:CoO belongs to the best cobalt oxide‐based catalysts ever reported for the oxygen evolution (OER) reaction.  相似文献   

10.
The development of cost-effective, durable and high-efficient oxygen evolution reaction (OER) electrocatalysts is an extremely critical technology for the large-scale industrial water electrolysis. Here, a new strategy is proposed to significantly enhance the electrocatalytic activity by forming a hybrid electrode of NiSe and Fe4.4Ni17.6Se16 through direct selenization of porous iron-nickel (FeNi) alloy foam via thermal selenization process. The obtained self-supported Fe4.4Ni17.6Se16/NiSe hybrid (FNS/NiSe) foam displays outstanding durability and remarkable catalytic activity in 1.0 M KOH with low overpotentials of 242 and 282 mV to achieve the current densities of 100 and 500 mA cm?2, respectively. To the best of our knowledge, it exceeds most of the reported OER electrocatalysts in alkaline electrolytes.  相似文献   

11.
Earth-abundant transition metal-based catalysts have been extensively investigated for their applicability in water electrolysers to enable overall water splitting to produce clean hydrogen and oxygen. In this study a Fe−Co based catalyst is electrodeposited in 30 seconds under vigorous hydrogen evolution conditions to produce a high surface area material that is active for both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER). This catalyst can achieve high current densities of 600 mAcm−2 at an applied potential of 1.6 V (vs RHE) in 1 M NaOH with a Tafel slope value of 48 mV dec−1 for the OER. In addition, the HER can be facilitated at current densities as high as 400 mA cm−2 due to the large surface area of the material. The materials were found to be predominantly amorphous but did contain crystalline regions of CoFe2O4 which became more evident after the OER indicating interesting compositional and structural changes that occur to the catalyst after an electrocatalytic reaction. This rapid method of creating a bimetallic oxide electrode for both the HER and OER could possibly be adopted to other bimetallic oxide systems suitable for electrochemical water splitting.  相似文献   

12.
The oxygen evolution reaction (OER) is key to renewable energy technologies such as water electrolysis and metal–air batteries. However, the multiple steps associated with proton-coupled electron transfer result in sluggish OER kinetics and catalysts are required. Here we demonstrate that a novel nitride, Ni2Mo3N, is a highly active OER catalyst that outperforms the benchmark material RuO2. Ni2Mo3N exhibits a current density of 10 mA cm−2 at a nominal overpotential of 270 mV in 0.1 m KOH with outstanding catalytic cyclability and durability. Structural characterization and computational studies reveal that the excellent activity stems from the formation of a surface-oxide-rich activation layer (SOAL). Secondary Mo atoms on the surface act as electron pumps that stabilize oxygen-containing species and facilitate the continuity of the reactions. This discovery will stimulate the further development of ternary nitrides with oxide surface layers as efficient OER catalysts for electrochemical energy devices.  相似文献   

13.
Active, stable, and earth-abundant bifunctional electrocatalyst for overall water splitting is pivotal to actualize large-scale water splitting via electrolysis. In this work, the hierarchical folded nanosheet-like Co0.85Se array on Ni foam is constructed by liquid-phase chemical conversion with cobalt precursor nanorod array. It can serve as an efficient bifunctional electrocatalyst for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline electrolyte, with a current density of 10 mA cm?2 at overpotential of 232 mV for OER and 129 mV for HER and Tafel slope of 78.9 mV dec?1 for OER and 95.0 mV dec?1 for HER, respectively. The two-electrode alkaline water electrolyzer utilizing this folded nanosheet-like Co0.85Se array as both anode and cathode toward overall water splitting offered a current of 10 mA cm?2 at a cell voltage of 1.60 V. This work explores an efficient and low-cost electrocatalyst for overall water splitting application in alkaline electrolytes.  相似文献   

14.
Simple and stable synthesis of transition metal sulfides and clarification of their growth mechanisms are of great importance for developing catalysts, metal‐air batteries and other technologies. In this work, we developed a one‐step facile hydrothermal approach to successfully synthesize NiS2 microspheres. By changing the experimental parameters, the reason that affects the formation of nanostructured spheres is investigated and discussed in detail, and the formation mechanism of microspheres is proposed innovatively. Furthermore, electrochemical testing results show that the 7 h‐NiS2 catalyst exhibits a remarkable oxygen evolution reaction (OER) activity with an overpotential of 311 mV at 10 mA cm?2 in 1.0 M KOH, superior to precious metal RuO2. The NiS2 catalyst also exhibits a robust durability. This work will contributes to the rational design and the understanding of growth mechanism of transition metal chalcogenide electrocatalysts for diverse energy conversion technologies.  相似文献   

15.
Electrochemical water splitting requires efficient, low‐cost water oxidation catalysts to accelerate the sluggish kinetics of the water oxidation reaction. A rapid photocorrosion method is now used to synthesize the homogeneous amorphous nanocages of Cu‐Ni‐Fe hydr(oxy)oxide as a highly efficient electrocatalyst for the oxygen evolution reaction (OER). The as‐fabricated product exhibits a low overpotential of 224 mV on a glassy carbon electrode at 10 mA cm?2 (even lower down to 181 mV when supported on Ni foam) with a Tafel slope of 44 mV dec?1 for OER in an alkaline solution. The obtained catalyst shows an extraordinarily large mass activity of 1464.5 A g?1 at overpotential of 300 mV, which is the highest mass activity for OER. This synthetic strategy may open a brand new pathway to prepare copper‐based ternary amorphous nanocages for greatly enhanced oxygen evolution.  相似文献   

16.
以静电纺丝制备的纤维为前驱体,通过煅烧、硒化处理等工艺合成了负载双金属硒化物纳米粒子的氮掺杂碳纤维(NCF)材料((Ni,Co)Se2/NCF),并对其进行了一系列相关的表征,研究了其在酸性和碱性条件下的析氢性能.(Ni,Co)Se2纳米粒子被锚定于NCF中,有效地阻止了纳米粒子的聚集,提供了更多的催化活性位点.电催化...  相似文献   

17.
Ferric oxides and (oxy)hydroxides, although plentiful and low‐cost, are rarely considered for oxygen evolution reaction (OER) owing to the too high spin state (eg filling ca. 2.0) suppressing the bonding strength with reaction intermediates. Now, a facile adsorption–oxidation strategy is used to anchor FeIII atomically on an ultrathin TiO2 nanobelt to synergistically lower the spin state (eg filling ca. 1.08) to enhance the adsorption with oxygen‐containing intermediates and improve the electro‐conductibility for lower ohmic loss. The electronic structure of the catalyst is predicted by DFT calculation and perfectly confirmed by experimental results. The catalyst exhibits superior performance for OER with overpotential 270 mV @10 mA cm?2 and 376 mV @100 mA cm?2 in alkaline solution, which is much better than IrO2/C and RuO2/C and is the best iron‐based OER catalyst free of active metals such as Ni, Co, or precious metals.  相似文献   

18.
Developing highly active, stable and robust electrocatalysts based on earth‐abundant elements for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is important for many renewable energy conversion processes. Herein, NixCo3‐xO4 nanoneedle arrays grown on 3D porous nickel foam (NF) was synthesized as a bifunctional electrocatalyst with OER and HER activity for full water splitting. Benefiting from the advantageous structure, the composite exhibits superior OER activity with an overpotential of 320 mV achieving the current density of 10 mA cm?2. An exceptional HER activity is also acquired with an overpotential of 170 mV at the current density of 10 mA cm?2. Furthermore, the catalyst also shows the superior activity and stability for 20 h when used in the overall water splitting cell. Thus, the hierarchical 3D structure composed of the 1D nanoneedle structure in NixCo3‐xO4/NF represents an avenue to design and develop highly active and bifunctional electrocatalysts for promising energy conversion.  相似文献   

19.
Cost-effective, highly efficient and stable non-noble metal-based catalysts for the oxygen evolution reaction (OER) are very crucial for energy storage and conversion. Here, an amorphous cobalt nickel phosphate (CoNiPO4), containing a considerable amount of high-valence Ni3+ species as an efficient electrocatalyst for OER in alkaline solution, is reported. The catalyst was converted from Co-doped Ni2P through pulsed laser ablation in liquid (PLAL) and exhibits a large specific surface area of 162.5 m2 g−1 and a low overpotential of 238 mV at 10 mA cm−2 with a Tafel slope of 46 mV dec−1, which is much lower than those of commercial RuO2 and IrO2. This work demonstrates that PLAL is a powerful technology for generating amorphous CoNiPO4 with high-valence Ni3+, thus paving a new way towards highly effective OER catalysts.  相似文献   

20.
NiFe layered double hydroxides (LDHs) have been denoted as benchmark non-noble-metal electrocatalysts for the oxygen evolution reaction (OER). However, for laminates of NiFe LDHs, the edge sites are active, but the basal plane is inert, leading to underutilization as catalysts for the OER. Herein, for the first time, light and electron-deficient Li ions are intercalated into the basal plane of NiFe LDHs. The results of theoretical calculations and experiments both showed that electrons would be transferred from near Ni2+ to the surroundings of Li+, resulting in electron-deficient properties of the Ni sites, which would function as “electron-hungry” sites, to enhance surface adsorption of electron-rich oxygen-containing groups, which would enhance the effective activity for the OER. As demonstrated by the catalytic performance, the Li−NiFe LDH electrodes showed an ultralow overpotential of only 298 mV at 50 mA cm−2, which was lower than that of 347 mV for initial NiFe LDHs and lower than that of 373 mV for RuO2. Reasonable intercalation adjustment effectively activates laminated Ni2+ sites and constructs the electron-deficient structure to enhance its electrocatalytic activity, which sheds light on the functional treatment of catalytic materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号