首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Graphite anodes are prone to dangerous Li plating during fast charging, but the difficulty to identify the rate-limiting step has made a challenging to eliminate Li plating thoroughly. Thus, the inherent thinking on inhibiting Li plating needs to be compromised. Herein, an elastic solid electrolyte interphase (SEI) with uniform Li-ion flux is constructed on graphite anode by introducing a triglyme (G3)-LiNO3 synergistic additive (GLN) to commercial carbonate electrolyte, for realizing a dendrite-free and highly-reversible Li plating under high rates. The cross-linked oligomeric ether and Li3N particles derived from the GLN greatly improve the stability of the SEI before and after Li plating and facilitate the uniform Li deposition. When 51 % of lithiation capacity is contributed from Li plating, the graphite anode in the electrolyte with 5 vol.% GLN achieved an average 99.6 % Li plating reversibility over 100 cycles. In addition, the 1.2-Ah LiFePO4 | graphite pouch cell with GLN-added electrolyte stably operated over 150 cycles at 3 C, firmly demonstrating the promise of GLN in commercial Li-ion batteries for fast-charging applications.  相似文献   

2.
A stable solid electrolyte interphase (SEI) layer is crucial for lithium metal anode (LMA) to survive in long-term cycling. However, chaotic structures and chemical inhomogeneity of natural SEI make LMA suffering from exasperating dendrite growth and severe electrode pulverization, which hinder the practical application of LMAs. Here, we design a catalyst-derived artificial SEI layer with an ordered polyamide-lithium hydroxide (PA-LiOH) bi-phase structure to modulate ion transport and enable dendrite-free Li deposition. The PA-LiOH layer can substantially suppress the volume changes of LMA during Li plating/stripping cycles, as well as alleviate the parasitic reactions between LMA and electrolyte. The optimized LMAs demonstrate excellent stability in Li plating/stripping cycles for over 1000 hours at an ultra-high current density of 20 mA cm−2 in Li||Li symmetric cells. A high coulombic efficiency up to 99.2 % in Li half cells in additive-free electrolytes is achieved even after 500 cycles at a current density of 1 mA cm−2 with a capacity of 1 mAh cm−2.  相似文献   

3.
Electrolyte engineering is crucial for the commercialization of lithium metal batteries. Here, lithium metal is stabilized in the highly reactive sulfolane-based electrolyte under low concentration (0.25 M) for the first time. Inorganic-polymer hybrid solid electrolyte interphase (SEI) with high ionic conductivity, low bonding with lithium and high flexibility enables dense chunky lithium deposition and high plating/stripping efficiency. Low concentration electrolyte (LCE) also enables excellent cycling stability of LiNi0.5Co0.2Mn0.3O2 (NCM523)/Li cells at 1 C (90.7 % retention after 500 cycles) and 0.3 C (83.3 % retention after 1000 cycles). With a low N/P ratio (≈2), the capacity retention for NCM523/Li cells can achieve 94.3 % after 100 cycles at 0.3 C. Exploring the LCE is of paramount significance because it provides more possibilities of the lithium salt selections, especially reviving some lithium salts that are excluded before due to their low solubility. More importantly, LCE has the significant advantage of commercialization due to its cost-effectiveness.  相似文献   

4.
The activation characteristics and the effects of current densities on the formation of a separate LiCoO2 and graphite electrode were investigated and the behavior also was compared with that of the full LiCoO2/graphite batteries using various electrochemical techniques. The results showed that the formation current densities obviously influenced the electrochemical impedance spectrum of Li/graphite, LiCoO2/Li, and LiCoO2/graphite cells. The electrolyte was reduced on the surface of graphite anode between 2.5 and 3.6 V to form a preliminary solid electrolyte interphase (SEI) film of anode during the formation of the LiCoO2/graphite batteries. The electrolyte was oxidized from 3.95 V vs Li+/Li on the surface of LiCoO2 to form a SEI film of cathode. A highly conducting SEI film could be formed gradually on the surface of graphite anode, whereas the SEI film of LiCoO2 cathode had high resistance. The LiCoO2 cathode could be activated completely at the first cycle, while the activation of the graphite anode needed several cycles. The columbic efficiency of the first cycle increased, but that of the second decreased with the increase in the formation current of LiCoO2/graphite batteries. The formation current influenced the cycling performance of batteries, especially the high-temperature cycling performance. Therefore, the batteries should be activated with proper current densities to ensure an excellent formation of SEI film on the anode surface.  相似文献   

5.
Lithium (Li) metal anodes have the highest theoretical capacity and lowest electrochemical potential making them ideal for Li metal batteries (LMBs). However, Li dendrite formation on the anode impedes the proper discharge capacity and practical cycle life of LMBs, particularly in carbonate electrolytes. Herein, we developed a reactive alternative polymer named P(St-MaI) containing carboxylic acid and cyclic ether moieties which would in situ form artificial polymeric solid electrolyte interface (SEI) with Li. This SEI can accommodate volume changes and maintain good interfacial contact. The presence of carboxylic acid and cyclic ether pendant groups greatly contribute to the induction of uniform Li ion deposition. In addition, the presence of benzyl rings makes the polymer have a certain mechanical strength and plays a key role in inhibiting the growth of Li dendrites. As a result, the symmetric Li||Li cell with P(St-MaI)@Li layer can stably cycle for over 900 h under 1 mA cm−2 without polarization voltage increasing, while their Li||LiFePO4 full batteries maintain high capacity retention of 96 % after 930 cycles at 1C in carbonate electrolytes. The innovative strategy of artificial SEI is broadly applicable in designing new materials to inhibit Li dendrite growth on Li metal anodes.  相似文献   

6.
Practical lithium–sulfur (Li−S) batteries are severely plagued by the instability of solid electrolyte interphase (SEI) formed in routine ether electrolytes. Herein, an electrolyte with 1,3,5-trioxane (TO) and 1,2-dimethoxyethane (DME) as co-solvents is proposed to construct a high-mechanical-stability SEI by enriching organic components in Li−S batteries. The high-mechanical-stability SEI works compatibly in Li−S batteries. TO with high polymerization capability can preferentially decompose and form organic-rich SEI, strengthening mechanical stability of SEI, which mitigates crack and regeneration of SEI and reduces the consumption rate of active Li, Li polysulfides, and electrolytes. Meanwhile, DME ensures high specific capacity of S cathodes. Accordingly, the lifespan of Li−S batteries increases from 75 cycles in routine ether electrolyte to 216 cycles in TO-based electrolyte. Furthermore, a 417 Wh kg−1 Li−S pouch cell undergoes 20 cycles. This work provides an emerging electrolyte design for practical Li−S batteries.  相似文献   

7.
The deployment of lithium metal anode in solid-state batteries with polymer electrolytes has been recognized as a promising approach to achieving high-energy-density technologies. However, the practical application of the polymer electrolytes is currently constrained by various challenges, including low ionic conductivity, inadequate electrochemical window, and poor interface stability. To address these issues, a novel eutectic-based polymer electrolyte consisting of succinonitrile (SN) and poly (ethylene glycol) methyl ether acrylate (PEGMEA) is developed. The research results demonstrate that the interactions between SN and PEGMEA promote the dissociation of the lithium difluoro(oxalato) borate (LiDFOB) salt and increase the concentration of free Li+. The well-designed eutectic-based PAN1.2-SPE (PEGMEA: SN=1: 1.2 mass ratio) exhibits high ionic conductivity of 1.30 mS cm−1 at 30 °C and superior interface stability with Li anode. The Li/Li symmetric cell based on PAN1.2-SPE enables long-term plating/stripping at 0.3 and 0.5 mA cm−2, and the Li/LiFePO4 cell achieves superior long-term cycling stability (capacity retention of 80.3 % after 1500 cycles). Moreover, Li/LiFePO4 and Li/LiNi0.6Co0.2Mn0.2O2 pouch cells employing PAN1.2-SPE demonstrate excellent cycling and safety characteristics. This study presents a new pathway for designing high-performance polymer electrolytes and promotes the practical application of high-stable lithium metal batteries.  相似文献   

8.
Lithium batteries employing Li or silicon (Si) anodes hold promise for the next-generation energy storage systems. However, their cycling behavior encounters rapid capacity degradation due to the vulnerability of solid electrolyte interphases (SEIs). Though anion-derived SEIs mitigate this degradation, the unavoidable reduction of solvents introduces heterogeneity to SEIs, leading to fractures during cycling. Here, we elucidate how the reductive stability of solvents, dominated by the electrophilicity (EPT) and coordination ability (CDA), delineates the SEI formed on Li or Si anodes. Solvents exhibiting lower EPT and CDA demonstrate enhanced tolerance to reduction, resulting in inorganic-rich SEIs with homogeneity. Guided by these criteria, we synthesized three promising solvents tailored for Li or Si anodes. The decomposition of these solvents is dictated by their EPTs under similar solvation structures, imparting distinct characteristics to SEIs and impacting battery performance. The optimized electrolyte, 1 M lithium bis(fluorosulfonyl)imide (LiFSI) in N-Pyrrolidine-trifluoromethanesulfonamide (TFSPY), achieves 600 cycles of Si anodes with a capacity retention of 81 % (1910 mAh g−1). In anode-free Cu||LiNi0.5Co0.2Mn0.3O2 (NCM523) pouch cells, this electrolyte sustains over 100 cycles with an 82 % capacity retention. These findings illustrate that reducing solvent decomposition benefits SEI formation, offering valuable insights for the designing electrolytes in high-energy lithium batteries.  相似文献   

9.
Li-O2 batteries have garnered much attention due to their high theoretical energy density. However, the irreversible lithium plating/stripping on the anode limits their performance, which has been paid little attention. Herein, a solvation-regulated strategy for stable lithium anodes in tetraethylene glycol dimethyl ether (G4) based electrolyte is attempted in Li-O2 batteries. Trifluoroacetate anions (TFA) with strong Li+ affinity are incorporated into the lithium bis(fluorosulfonyl)imide (LiTFSI)/G4 electrolyte to attenuate the Li+-G4 interaction and form anion-dominant solvates. The bisalt electrolyte with 0.5 M LiTFA and 0.5 M LiTFSI mitigates G4 decomposition and induces an inorganic-rich solid electrolyte interphase (SEI). This contributes to decreased desolvation energy barrier from 58.20 to 46.31 kJ mol−1, compared with 1.0 M LiTFSI/G4, for facile interfacial Li+ diffusion and high efficiency. It yields extended lifespan of 120 cycles in Li-O2 battery with a limited Li anode (7 mAh cm−2). This work gains comprehensive insights into rational electrolyte design for Li-O2 batteries.  相似文献   

10.
Solid-electrolyte interphase (SEI) seriously affects battery's cycling life, especially for high-capacity anode due to excessive electrolyte decomposition from particle fracture. Herein, we report an ultrathin SEI (3–4 nm) induced by Cu+-tailored double electrical layer (EDL) to suppress electrolyte consumption and enhance cycling stability of CuS anode in sodium-ion batteries. Unique EDL with SO3CF3-Cu complex absorbing on CuS in NaSO3CF3/diglyme electrolyte is demonstrated by in situ surface-enhanced Raman, Cyro-TEM and theoretical calculation, in which SO3CF3-Cu could be reduced to CuF2-rich SEI. Dispersed CuF2 and F-containing compound can provide good interfacial contact for formation of ultrathin and stable SEI film to minimize electrolyte consumption and reduce activation energy of Na+ transport. As a result, the modified CuS delivers high capacity of 402.8 mAh g−1 after 7000 cycles without capacity decay. The insights of SEI construction pave a way for high-stability electrode.  相似文献   

11.
Metallic Na is a promising metal anode for large-scale energy storage. Nevertheless, unstable solid electrolyte interphase (SEI) and uncontrollable Na dendrite growth lead to disastrous short circuit and poor cycle life. Through phase field and ab initio molecular dynamics simulation, we first predict that the sodium bromide (NaBr) with the lowest Na ion diffusion energy barrier among sodium halogen compounds (NaX, X=F, Cl, Br, I) is the ideal SEI composition to induce the spherical Na deposition for suppressing dendrite growth. Then, 1,2-dibromobenzene (1,2-DBB) additive is introduced into the common fluoroethylene carbonate-based carbonate electrolyte (the corresponding SEI has high mechanical stability) to construct a desirable NaBr-rich stable SEI layer. When the Na||Na3V2(PO4)3 cell utilizes the electrolyte with 1,2-DBB additive, an extraordinary capacity retention of 94 % is achieved after 2000 cycles at a high rate of 10 C. This study provides a design philosophy for dendrite-free Na metal anode and can be expanded to other metal anodes.  相似文献   

12.
A hybrid solid electrolyte interphase (SEI) formation additive, vinylene carbonate (VC)–LiNO3, was investigated in carbonic ester electrolytes. An efficiency of lithium plating/stripping as high as nearly 100% and spherical Li deposits were obtained. The electrochemical impedance spectroscopy (EIS) results demonstrate that the modified SEI is very stable and of good conductivity. X-ray photoelectron spectroscopy (XPS) results indicate that VC–LiNO3 dominates the surface chemistry of the Li anode. The formation of Li3N in the SEI contributes to the enhancement of the anode performance.  相似文献   

13.
Lithium–sulfur (Li−S) batteries are promising due to ultrahigh theoretical energy density. However, their cycling lifespan is crucially affected by the electrode kinetics of lithium polysulfides. Herein, the polysulfide solvation structure is correlated with polysulfide electrode kinetics towards long-cycling Li−S batteries. The solvation structure derived from strong solvating power electrolyte induces fast anode kinetics and rapid anode failure, while that derived from weak solvating power electrolyte causes sluggish cathode kinetics and rapid capacity loss. By contrast, the solvation structure derived from medium solvating power electrolyte balances cathode and anode kinetics and improves the cycling performance of Li−S batteries. Li−S coin cells with ultra-thin Li anodes and high-S-loading cathodes deliver 146 cycles and a 338 Wh kg−1 pouch cell undergoes stable 30 cycles. This work clarifies the relationship between polysulfide solvation structure and electrode kinetics and inspires rational electrolyte design for long-cycling Li−S batteries.  相似文献   

14.
The stability of high-energy-density lithium metal batteries depends on the uniformity of solid electrolyte interphase (SEI) on lithium metal anodes. Rationally improving SEI uniformity is hindered by poorly understanding the effect of structure and components of SEI on its uniformity. Herein, a bilayer structure of SEI formed by isosorbide dinitrate (ISDN) additives in localized high-concentration electrolytes was demonstrated to improve SEI uniformity. In the bilayer SEI, LiNxOy generated by ISDN occupies top layer and LiF dominates bottom layer next to anode. The uniformity of lithium deposition is remarkably improved with the bilayer SEI, mitigating the consumption rate of active lithium and electrolytes. The cycle life of lithium metal batteries with bilayer SEI is three times as that with common anion-derived SEI under practical conditions. A prototype lithium metal pouch cell of 430 Wh kg−1 undergoes 173 cycles. This work demonstrates the effect of a reasonable structure of SEI on reforming SEI uniformity.  相似文献   

15.
Controlling lithium (Li) electrocrystallization with preferred orientation is a promising strategy to realize highly reversible Li metal batteries (LMBs) but lack of facile regulation methods. Herein, we report a high-flux solid electrolyte interphase (SEI) strategy to direct (110) preferred Li deposition even on (200)-orientated Li substrate. Bravais rule and Curie-Wulff principle are expanded in Li electrocrystallization process to decouple the relationship between SEI engineering and preferred crystal orientation. Multi-spectroscopic techniques combined with dynamics analysis reveal that the high-flux CF3Si(CH3)3 (F3) induced SEI (F3-SEI) with high LiF and −Si(CH3)3 contents can ingeniously accelerate Li+ transport dynamics and ensure the sufficient Li+ concentration below SEI to direct Li (110) orientation. The induced Li (110) can in turn further promote the surface migration of Li atoms to avoid tip aggregation, resulting in a planar, dendrite-free morphology of Li. As a result, our F3-SEI enables ultra-long stability of Li||Li symmetrical cells for more than 336 days. Furthermore, F3-SEI modified Li can significantly enhance the cycle life of Li||LiFePO4 and Li||NCM811 coin and pouch full cells in practical conditions. Our crystallographic strategy for Li dendrite suppression paves a path to achieve reliable LMBs and may provide guidance for the preferred orientation of other metal crystals.  相似文献   

16.
将石墨涂覆于传统铜箔(CCC)与穿孔铜箔(PCC)集流体表面,通过内部短路的方式进行预嵌锂处理,再以商业化的活性炭及预锂化的石墨分别为正、负极材料组装成锂离子电容器(LIC)。以PCC为集流体的LIC在0.1和2.0 A?g~(-1)的电流密度下,能量密度分别为118.2和51.7 Wh?kg~(-1),并且在0.5 A?g~(-1)的电流密度下循环1000次后的能量密度保持率为90%;以CCC为集流体的LIC在0.1和2.0 A?g~(-1)的电流密度下的能量密度分别为125.5和43.3 Wh?kg~(-1),在同等电流密度下2.0-3.8 V之间循环1000次后的能量密度保持率仅为73.2%。进一步研究表明,石墨采用PCC在预嵌锂的过程中避免了金属锂沉积,生成了均一且稳定的固体电解质膜(SEI),有效防止充放电过程中SEI膨胀,活性物质与集流体间粘结力降低,活性物质脱落等现象发生。因此,LIC通过PCC完成预嵌锂后的自放电及内阻更小,具有更佳的倍率性能和循环性能。  相似文献   

17.
Without excess Li, anode-free Li-metal batteries (AFLMBs) have been proposed as the most likely solution to realizing highly-safe and cost-effective Li-metal batteries. Nevertheless, short cyclic life puzzles conventional AFLMBs due to anodic dead Li accumulation with a local current concentration induced by irreversible electrolyte depletion, insufficient active Li reservoir and slow Li+ transfer at the solid electrolyte interphase (SEI). Herein, SrI2 is introduced into carbon paper (CP) current collector to effectively suppress dead Li through synergistic mechanisms including reversible I/I3 redox reaction to reactivate dead Li, dielectric SEI surface with SrF2 and LiF to prevent electrolyte decomposition and highly ionic conductive (3.488 mS cm−1) inner layer of SEI with abundant LiI to enable efficient Li+ transfer inside. With the SrI2-modified current collector, the NCM532/CP cell delivers unprecedented cyclic performances with a capacity of 129.2 mAh g−1 after 200 cycles.  相似文献   

18.
Li metal batteries are revived as the next-generation batteries beyond Li-ion batteries. The Li metal anode can be paired with intercalation-type cathodes LiMO2 and conversion-type cathodes such as sulfur and oxygen. Then, energy densities of Li/LiMO2 and Li/S,O2 batteries can reach 400 Whkg?1 and more than 500 Whkg?1, respectively, which surpass that of the state-of-the-art LIB (280 Whkg?1). However, replacing the intercalation-type graphite anode with the Li metal anode suffers from low coulombic efficiency during repeated Li plating/stripping processes, which leads to short cycle lifetime and potential safety problems. The key solution is to construct a stable and uniform solid electrolyte interphase with high Li+ transport and high elastic strength on the Li metal anode. This review summarizes recent progress in improving the solid electrolyte interphase by tailoring liquid electrolytes, a classical but the most convenient and cost-effective strategy.  相似文献   

19.
Utilization of lithium (Li) metal anode is highly desirable for achieving high energy density batteries. Even so, the unavoidable features of Li dendritic growth and inactive Li are still the main factors that hinder its practical application. During plating and stripping, the solid electrolyte interphase (SEI) layer can provide passivation, playing an important role in preventing direct contact between the electrolyte and the electrode in Li metal batteries. Because of complexities of the electrolyte chemical and electrochemical reactions, the various formation mechanisms for the SEI are still not well understood. What we do know is that a strategic artificial SEI achieved through additives electrolyte can suppress the Li dendrites. Otherwise, the dendrites keep generating an abundance of irreversible Li, resulting in severe capacity loss, internal short-circuiting, and cell failure. In this minireview, we focus on the phenomenon of dendritic Li-growth and provide a brief overview of SEI formation. We finally provide some clear insights and perspectives toward practical application of Li metal batteries.  相似文献   

20.
Li−O2 batteries with bis(trifluoromethanesulfonyl)imide-based ionic liquid (TFSI-IL) electrolyte are promising because TFSI-IL can stabilize O2 to lower charge overpotential. However, slow Li+ transport in TFSI-IL electrolyte causes inferior Li deposition. Here we optimize weak solvating molecule (anisole) to generate anisole-doped ionic aggregate in TFSI-IL electrolyte. Such unique solvation environment can realize not only high Li+ transport parameters but also anion-derived solid electrolyte interface (SEI). Thus, fast Li+ transport is achieved in electrolyte bulk and SEI simultaneously, leading to robust Li deposition with high rate capability (3 mA cm−2) and long cycle life (2000 h at 0.2 mA cm−2). Moreover, Li−O2 batteries show good cycling stability (a small overpotential increase of 0.16 V after 120 cycles) and high rate capability (1 A g−1). This work provides an effective electrolyte design principle to realize stable Li deposition and high-performance Li−O2 batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号