首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 729 毫秒
1.
Detection of sub-ppm acetic acid (CH3COOH) is in demand for environmental gas monitoring. In this article, we propose a CH3COOH gas sensor based on Sn3O4 and reduced graphene oxide (RGO), where the assembly of Sn3O4-RGO nanocomposites is dependent on the synthesis method. Three nanocomposites prepared by three different synthesis methods are investigated. The optimum assembly is by hydrothermal reactions of Sn4+ salts and pre-reduced RGO (designated as RS nanocomposite). Raman spectra verified the fingerprint of RGO in the synthesized RS nanocomposite. The Sn3O4 planes of (111), (210), (130), (13¯2) are observed from the X-ray diffractogram, and its average crystallite size is 3.94 nm. X-ray photoelectron spectroscopy on Sn3d and O1s spectra confirm the stoichiometry of Sn3O4 with Sn:O ratio = 0.76. Sn3O4-RGO-RS exhibits the highest response of 74% and 4% at 2 and 0.3 ppm, respectively. The sensitivity within sub-ppm CH3COOH is 64%/ppm. Its superior sensing performance is owing to the embedded and uniformly wrapped Sn3O4 nanoparticles on RGO sheets. This allows a massive relative change in electron concentration at the Sn3O4-RGO heterojunction during the on/off exposure of CH3COOH. Additionally, the operation is performed at room temperature, possesses good repeatability, and consumes only ~4 µW, and is a step closer to the development of a commercial CH3COOH sensor.  相似文献   

2.
On the Tin Oxide Sn2O3, which is formed by Disproportionation of SnO When tin monoxide disproportionates at >300°C, together with SnO2 an unstable tin oxide is formed, which further decomposes under the same conditions. By chemical analysis and a modified method of X-ray analysis, its formula is determined as Sn2O3.  相似文献   

3.
《Solid State Sciences》2001,3(4):483-494
A new mixed ammonium tin oxalate trihydrate, Sn2(NH4)2(C2O4)3·3H2O, has been prepared from evaporation of a solution of tin and ammonium oxalates. Its crystal structure has been solved from single-crystal diffraction data. The symmetry is orthorhombic, space group Pnma (No. 62), cell dimensions a=15.1821(5) Å, b=11.7506(2) Å, c=10.8342(3) Å, and Z=4. The structure consists of macroanionic layers built from [Sn(C2O4)3]2– groups. The SnO6 polyhedron can be described as a pseudo pentagonal bipyramid, with the lone pair of electrons presumably occupying one apex. The resulting framework displays holes in which the water molecules and ammonium groups are located. The thermal behaviour of the mixed ammonium tin oxalate has been investigated with temperature-dependent X-ray powder diffraction and conventional thermal analysis. The degradation process has been completely explained, as well as that of oxammite, a phase always obtained in the preparations. The thermal decomposition of oxammite leads to (NH4)2C2O4 and a new acid salt, NH4HC2O4. The mixed ammonium tin oxalate decomposes successively into the amorphous compounds, Sn2(NH4)2(C2O4)3·H2O and Sn2(NH4)2(C2O4)3, SnC2O4 and, finally, cassiterite SnO2.  相似文献   

4.
Crystal chemistry and phase relations of the bronze forming region of the SnWO system have been investigated. Above 780°C the tin bronzes SnxWO3 are shown to be thermally unstable and an equilibrium diagram is established at 700°C which shows that the composition limits of the tetragonal phase are 0.21 ? x ? 0.29. Below x = 0.21 a series of single and two phase regions containing orthorhombic bronzes exists for which the composition limits have been established. In the range 0.29 ? x ? 0.76 the system comprises the tetragonal bronze, Sn2W3O8 and SnWO4, while above 0.76 there is no bronze, only Sn2W3O8, SnWO4 and free Sn. The phase Sn2W3O8 has been isolated and shown to have a hexagonal unit cell, a = 7.696 Å, c = 18.654 Å. The evidence of differential thermal analysis and X-ray studies suggests that this hexagonal phase arises from the decomposition of the tungsten bronze phase and is itself decomposed to cubic SnWO4 above 700°C. Small thermal effects observed in the DTA scans of tin-containing tetragonal bronzes are interpreted in terms of an order-disorder phenomenon arising from asymmetric tunnel occupancy by Sn2+ ions caused by the presence of the lone pair of electrons. Hydrogen reduction of SnxWO3 has been shown to result in complete removal of oxygen, producing Sn + α-W in the range 600–850°C. Some activation energy data are given for the reduction process.  相似文献   

5.
Ce2Sn2O7 pyrochlore was synthesized by a hydrothermal method. X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to characterize the composition and valence state of the sample. The oxygen exchange property of the Ce2Sn2O7 phase was measured by an oxidation reaction in sealed air atmosphere and a followed reduction reaction in 5% H2-95% N2 atmosphere. Gas chromatography (GC) was used to analyze the oxygen change in the reaction. The results show that Ce2Sn2O7 sample has excellent oxygen absorption capacity at 250°C as Ce3+ ions are oxidized to Ce4+ ions. The oxidized sample can be reduced by 5% H2-95% N2. The refreshed sample remains the capacity of oxygen absorption, while the oxygen exchange capacity degrades with the reduction times.  相似文献   

6.
Annealing of a hydroxide precursor containing equimolar amounts of Mg2+ and Ti4+ and small additions of Sn4+ (0.1 at %) in air at 900°C leads to titanate MgTiO3 with an ilmenite structure. The 119Sn Mössbauer spectrum of the sample (unresolved doublet with the isomer shift δ = 0.10 ± 0.01 mm/s and the quadrupole splitting Δ = 0.49 ± 0.02 mm/s) is evidence that the tin atoms are still in the oxidation state +4. Annealing of the precursor at the same temperature in a hydrogen atmosphere yields MgTiO3 containing Sn2+ ions (a doublet at δ = 2.82 ± 0.01 mm/s and Δ = 1.66 ± 0.03 mm/s) (the Sn2+/MgTiO3 sample). According to the spectral parameters, the 119Sn2+ ions have a low coordination number (CN ? 6) and are abnormally resistant to reduction to the metal. Analogous features of the crystal-chemical behavior of 119Sn2+ were previously observed during the Mössbauer study of the samples containing tin on the surface of Cr2O3, α-Al2O3, and MgO crystallites. The conclusion drawn from analysis of the 119Sn2+ Mössbauer parameters that tin in the Sn2+/MgTiO3 sample has surface localization was supported by X-ray photoelectron spectroscopy. Mössbauer measurements show that the tin of Sn2+/MgTiO3 when in contact with air is oxidized much more slowly than on the surface of Cr2O3, α-Al2O3, or MgO crystallites. The inhibition of the oxidation reaction is explained to be due to passivation of adsorbed O2 molecules caused by their interaction with mobile t 2g electrons of Ti3+ forming in titanate during high-temperature annealing in H2. In addition to the Sn2+ doublet, the 119Sn spectrum shows a spectral component with parameters (δ ~ 1.6 mm/s, Δ ≤ 0.2 mm/s) not fitting the known tin species that can form in MgTiO3. This component is explained by persistence in titanate of some Sn4+ ions immobilizing the mobile t 2g electron at one of their neighboring Ti4+ cations.  相似文献   

7.
Mössbauer Studies on Sn2O3 Mössbauer data for 119Sn in Sn2O3 show this compound to contain bivalent and tetravalent tin. Whereas tin(IV) is coordinated in a similar way in Sn2O3 and SnO2, a rather large quadrupole splitting indicates an environment of low symmetry for tin(II).  相似文献   

8.
A comparative study of two Sn-based composite materials as negative electrode for Li-ion accumulators is presented. The former SnB0.6P0.4O2.9 obtained by in-situ dispersion of SnO in an oxide matrix is shown to be an amorphous tin composite oxide (ATCO). The latter Sn0.72[BPO4]0.28 obtained by ex-situ dispersion of Sn in a borophosphate matrix consists of Sn particles embedded in a crystalline BPO4 matrix. The electrochemical responses of ATCO and Sn0.72[BPO4]0.28 composite in galvanostatic mode show reversible capacities of about 450 and 530 mAh g−1, respectively, with different irreversible capacities (60% and 29%). Analysis of these composite materials by 119Sn Mössbauer spectroscopy in transmission (TMS) and emission (CEMS) modes confirms that ATCO is an amorphous SnII composite oxide and shows that in the case of Sn0.72[BPO4]0.28, the surface of the tin clusters is mainly formed by SnII in an amorphous interface whereas the bulk of the clusters is mainly formed by Sn0. The determination of the recoilless free fractions f (Lamb-Mössbauer factors) leads to the effective fraction of both Sn0 and SnII species in such composites. The influence of chemical composition and especially of the surface-to-bulk tin species ratio on the electrochemical behaviour has been analysed for several Snx[BPO4]1−x composite materials (0.17<x<0.91). The cell using the compound Sn0.72[BPO4]0.28 as active material exhibits interesting electrochemical performances (reversible capacity of 500 mAh g−1 at C/5 rate).  相似文献   

9.
Lithium reaction mechanism in amorphous tin composite oxide SnB0.6P0.4O2.9 is characterized by X-ray diffraction, 119Sn Mössbauer spectroscopy and X-ray absorption fine structure. The analysis of the experimental data concerning SnB0.6P0.4O2.9 shows that SnII is highly ionic and is surrounded by three oxygen atoms. The detailed analysis of lithium insertion mechanism shows a complex reduction mechanism in two steps. During the first one the main reaction corresponds to a partial SnII reduction, involving a mixed valence system. It is accompanied by modifications of tin environments, while lithium acts as a network modifier inducing the formation of nonbridging oxygen atoms. The second step corresponds to LiSn alloying process, with the formation of LiSn bonds. It is worth noting the persistence of SnO interactions in this second step. The reversible part of the mechanism can be explained from the formation of small particles of lithium–tin alloys in strong interaction with the oxygen atoms in the glass matrix, while the vitreous support presents an interesting dispersal effect.  相似文献   

10.
《Solid State Sciences》2012,14(7):914-919
Indium oxide co-doped with tin and zinc (ITZO) ceramics have been successfully prepared by direct sintering of the powders mixture at 1300 °C. This allowed us to easily fabricate large highly dense target suitable for sputtering transparent conducting oxide (TCO) films, without using any cold or hot pressing techniques. Hence, the optimized ITZO ceramic reaches a high relative bulk density (∼ 92% of In2O3 theoretical density) and higher than the well-known indium oxide doped with tin (ITO) prepared under similar conditions. All X-ray diagrams obtained for ITZO ceramics confirms a bixbyte structure typical for In2O3 only. This indicates a higher solubility limit of Sn and Zn when they are co-doped into In2O3 forming a solid-solution. A very low value of electrical resistivity is obtained for [In2O3:Sn0.10]:Zn0.10 (1.7 × 10−3 Ω cm, lower than ITO counterpart) which could be fabricated to high dense ceramic target suing pressure-less sintering.  相似文献   

11.
The tetranuclear mixed-valent oxo-cluster [SnIISnIVO(O2CCF3)4]2 (1) has been prepared by reacting SnCl2 with AgO2CCF3 in a sealed ampoule at 90 °C. Alternatively, 1 was obtained by acidolysis of Ph3SnSnPh3 with trifluoroacetic acid in solution. The X-ray diffraction study of 1 revealed the presence of a SnIIOSn2IVOSnII core comprised of the penta-coordinated divalent and six-coordinated tetravalent tin atoms. The 119Sn NMR studies confirmed the stability of the cluster in solution and the presence of two different oxidation states of tin. An acidolysis of Ph3SnSnPh3 in the presence of [Cu2II(O2CCF3)4] followed by sublimation of the resulting product at 90 °C afforded the first trinuclear mixed metal Sn–Cu cluster [(C6H5)2Sn2IVCuIIO(O2CCF3)6] (2). The X-ray diffraction analysis of 2 revealed the presence of two phenyl groups attached to the six-coordinated tin(IV) atoms and the tetragonal pyramidal environment of the copper(II) atom. Both complexes have been obtained free of exogenous ligands.  相似文献   

12.
The article presents the results of research on the hydrothermal synthesis of nanoscale oxide of cobalt and zirconium and their mixed oxide compositions. The synthesized samples have been characterized by the X-ray phase, scanning electron microscopy and nitrogen adsorption-desorption methods; the composition of the samples has been determined by chemical analysis methods, and their catalytic activity in the decomposition of hydrogen peroxide has been studied. It has been shown that during synthesis, highly dispersed cobalt and zirconium oxide are formed, and the sample of the composition (mol %): Co3O4(88)−ZrO2(12) has the highest specific surface area (181.2 m2/g) and the highest activity (K=6.18 ⋅ 10−2 s−1) against the decomposition of hydrogen peroxide. The increasing of the ZrO2 content in oxide compositions reduces their catalytic activity. The particle size in the synthesized samples is 7–38 nm.  相似文献   

13.
The hyperfine structure of the low-temperature Mössbauer spectra of dopant 119Sn4+ ions (0.4 at. %) in a fine crystalline MnO sample, characterized by X-ray diffraction and magnetic measurements, has been studied. The 119Sn spectra show that tin is distributed over positions with an inhomogeneous cationic environment. The appearance of such positions is explained by the local compensation for the excess charge of Sn4+ by manganese vacancies V Mn and segregation of defects resulting in precipitation of MnSnO3 clusters. The non-uniform distribution of Sn4+ and the related dependence of the number of broken magnetic bonds on the local tin concentration are responsible for the fluctuation of the T N values, which is “perceived” by 119Sn in different MnO crystallites. The 119Sn spectra exclude the possibility that tin enters into the composition of superpara-magnetic particles.  相似文献   

14.
A new organotin nitrato compound of formula [SnIV(NO3){(C6H5)3SnIV}3], has been obtained and its crystal structure is reported; this represents the first X-ray characterization of a tetranuclear system of tin atoms.  相似文献   

15.
A new method of synthesis of volatile complex, tin trifluoroacetylacetonate [Sn(C5H4O2F3)2], was proposed. The prepared compound was identified by IR spectroscopy, CH analysis, X-ray powder diffraction, and DTA/TGA, the composition was confirmed by MALDI-TOF mass spectrometry, crystal structure was established. Thin films of tin dioxide on silicon were obtained by atmospheric pressure chemical vapor deposition using [Sn(C5H4O2F3)2] as a precursor. The morphology and composition of the films were studied by scanning electron microscopy, EDX elemental analysis, and X-ray powder diffraction. Surface resistance and light transmission in visible and near IR region were studied.  相似文献   

16.
Two new three‐dimensional neutral open‐framework tin(II) phosphates, Sn5O2(PO4)2 and Sn4O(PO4)2, were synthesized under hydrothermal conditions with different ratio of tin(II) oxalate, phosphoric acid and 4,4′‐diaminodiphenylmethane. Their crystal structures have been solved by single‐crystal X‐ray diffraction methods. Sn5O2(PO4)2 crystallizes in the space group and contains six‐membered ring and twelve‐membered ring channels running parallel to the b axis. Sn4O(PO4)2 crystallizes in the space group P21/n and contains intersecting eight‐membered ring channels. These two compounds have rare trigonal‐planar Sn3O.  相似文献   

17.
The preparation of a new oxide fluoride of composition Ba2SnO2.5F3·xH2O (x≈0.5) from the low-temperature (240 °C) reaction between Ba2SnO4 and ZnF2 is reported. X-ray and neutron powder diffraction showed fluorination to result in a significant enlargement along the c-axis (by ca. 3 Å) of the unit cell of the precursor oxide. A structural model based on the perovskite-related K2NiF4-type structure of this oxide is proposed in which there is direct replacement of oxygen in octahedral SnO6 units by fluorine, as well as the presence of F- at interstitial sites between BaO rock salt layers. Atomistic computer modelling indicates that apical fluorine substitution is favoured. The structural model is supported by the results of 19F and 119Sn MAS NMR spectroscopy as well as tin K- and barium K-edge EXAFS. Thermal analysis revealed the presence of water in the synthesized material and this is assigned to interstitial sites. 119Tin Mössbauer spectroscopy and tin K-edge XANES are consistent with enhanced withdrawal by substituted fluorine of electron density from Sn4+.  相似文献   

18.
以电纺TiO_2纳米纤维为基质,采用一步水热法合成了Bi@Bi_2Sn_2O_7/TiO_2等离子体复合纤维光催化剂。利用X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、高分辨透射电镜(HRTEM)、紫外-可见漫反射(UV-Vis DRS)和光致发光光谱(PL)等分析测试手段对样品的物相、形貌和光电性能等进行表征。以三乙醇胺为电子给体,研究了Bi@Bi_2Sn_2O_7/TiO_2复合纤维光催化裂解水制氢的反应过程。结果表明:在水热过程中,Bi_2Sn_2O_7构筑在TiO_2纳米纤维表面形成p-n结的同时,部分Bi3+被葡萄糖还原成金属Bi沉积在Bi_2Sn_2O_7上。金属Bi的等离子体共振效应与p-n结的协同作用,有效提高了样品的光催化活性,产氢速率达到7.26 mmol·h~(-1)·g~(-1)。  相似文献   

19.
Nanopowder of a new tin(II) titanium(IV) oxide hydroxide fluoride, Sn1.24Ti1.94O3.66(OH)1.50F1.42 with the pyrochlore-type structure (cubic a = 10.3777(7) Å, space group Fd-3m) was prepared by using a microwave-assisted solvothermal reaction. The grain size of the nanopowder was 20–30 nm in diameter. Sn1.24Ti1.94O3.66(OH)1.50F1.42 decomposed above 300 °C, but could be sintered to relative density greater than 99% by a hydrothermal hot-pressing (HHP) method at 270 °C and 80 MPa for 4 h. The synthesized powder and solidified body obtained using HHP showed significantly different color, probably due to the difference in water content.  相似文献   

20.
A tin(II) squarate Sn2O(C4O4)(H2O) was synthesized by hydrothermal technique. It crystallizes in the monoclinic system, space group C2/m (no. 12) with lattice parameters a=12.7380(9) Å, b=7.9000(3) Å, c=8.3490(5) Å, β=121.975(3)°, V=712.69(7) Å3, Z=4. The crystal structure determined with an R=0.042 factor, consists of [(Sn4O10)(H2O)2] units connected from one another in the [101] and [010] directions via squarate groups to form layers separated by Sn(II) lone pairs. This compound presents the same remarkable structural arrangement as observed in the tin-oxo-fluoride Sn2[Sn2O2F4] inorganic compound with Sn(II) lone pairs E(1) and E(2) concentrated in large rectangular-shape tunnels running along [001] direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号