首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The retention of fifty structurally different compounds has been studied using linear solvation energy relationships. Investigations were performed with the use of six various stationary phases with two mobile phases (50/50?% v/v methanol/water and 50/50?% v/v acetonitrile/water). Packing materials were home-made and functionalized with octadecyl, alkylamide, cholesterol, alkyl-phosphate and phenyl molecules. This is the first attempt to compare all of these stationary phases synthesized on the same silica gel batch. Therefore, all of them may be compared in more complex and believable way, than it was performed earlier in former investigations. The phase properties (based on Abraham model) were used to the classification of stationary phases according to their interaction properties. The hydrophilic system properties s, a, b indicate stronger interactions between solute and mobile phase for most of the columns. Both e and v cause greater retention as a consequence of preferable interactions with stationary phase by electron pairs and cavity formation as well as hydrophobic bonds. However, alkyl-phosphate phase has different retention properties, as it was expressed by positive sign of s coefficient. It may be concluded that most important parameters influencing the retention of compounds are volume and hydrogen bond acceptor basicity. The LSER coefficients showed also the dependency on the type of organic modifier used as a mobile phase component.  相似文献   

2.
Noga  Sylwia  Jandera  Pavel  Buszewski  Bogus&#;aw 《Chromatographia》2013,76(15):929-937

The goal of the study was to investigate separation mechanism of selected “essential” amino acids (leucine, isoleucine, threonine, tryptophan, proline, and glycine) and vitamin B6 in hydrophilic interaction liquid chromatography (HILIC) with the evaporative light scattering detection. Chromatographic measurements were made on three different HILIC columns: amide-silica (TSK-gel Amide-80), amino-silica (TSK-gel NH2-100), and cross-linked diol (Luna HILIC). The retention behaviour of the analytes was investigated as a function of different binary hydro-organic mobile phases containing 10–90 % (v/v) acetonitrile. The compounds studied were separated under isocratic and gradient conditions. The best results of tested biologically active compounds separation were obtained on the TSK-gel NH2-100 column. TSK-gel NH2 column showed mixed HILIC–ion-exchange mechanism, the highest separation efficiency and better selectivity and resolution for tested analytes than the other studied column, especially at concentration of water in mobile phase lower than 30 % (v/v). Special attention was dedicated to the study of interactions among the stationary phase, mobile phase and the analytes.

  相似文献   

3.
The solvation parameter model is used to elucidate the retention mechanism of neutral compounds on the pentafluorophenylpropylsiloxane-bonded silica stationary phase (Discovery HS F5) with methanol-water and acetonitrile-water mobile phases containing from 10 to 70% (v/v) organic solvent. The dominant factors that increase retention are solute size and electron lone pair interactions while polar interactions reduce retention. A comparison of the retention mechanism with an octadecylsiloxane-bonded silica stationary phase based on the same silica substrate and with a similar bonding density (Discovery HS C18) provides additional insights into selectivity differences for the two types of stationary phase. The methanol-water solvated pentafluorophenylpropylsiloxane-bonded silica stationary phase is more cohesive and/or has weaker dispersion interactions and is more dipolar/polarizable than the octadecylsiloxane-bonded silica stationary phase. Differences in hydrogen-bonding interactions contribute little to relative retention differences. For mobile phases containing more than 30% (v/v) acetonitrile selectivity differences for the pentafluorophenylpropylsiloxane-bonded and octadecylsiloxane-bonded silica stationary phases are no more than modest with differences in hydrogen-bond acidity of greater importance than observed for methanol-water. Below 30% (v/v) acetonitrile selectivity differences are more marked owing to incomplete wetting of the octadecylsiloxane-bonded silica stationary phase at low volume fractions of acetonitrile that are not apparent for the pentafluorophenylpropylsiloxane-bonded silica stationary phase. Steric repulsion affects a wider range of compounds on the octadecylsiloxane-bonded than pentafluorophenylpropylsiloxane-bonded silica stationary phase with methanol mobile phases resulting in additional selectivity differences than predicted by the solvation parameter model. Electrostatic interactions with weak bases were unimportant for methanol-water mobile phase compositions in contrast to acetonitrile-water where ion-exchange behavior is enhanced, especially for the pentafluorophenylpropylsiloxane-bonded silica stationary phase. The above results are compatible with a phenomenological interpretation of stationary phase conformations using the haystack, surface accessibility, and hydro-linked proton conduit models.  相似文献   

4.
The solvation parameter model system constants and retention factors were used to interpret retention properties of 39 calibration compounds on a biphenylsiloxane-bonded stationary phase (Kinetex biphenyl) for acetone-water binary mobile phase systems containing 30–70% v/v. Variation in system constants, phase ratios, and retention factors of acetone-water binary mobile phases systems were compared with more commonly used acetonitrile and methanol mobile phase systems. Retention properties of acetone mobile phases on a Kinetex biphenyl column were more similar to that of acetonitrile than methanol mobile phases except with respect to selectivity equivalency. Importantly, selectivity differences arising between acetone and acetonitrile systems (the lower hydrogen-bond basicity of acetone-water mobile phases and differences in hydrogen-bond acidity, cavity formation and dispersion interactions) could be exploited in reversed-phase liquid chromatography method development on a Kinetex biphenyl stationary phase.  相似文献   

5.
6.
Summary The effect of temperature and mobile phase composition (methanol-water) on the retention behaviour of an oligomeric series of n-octylsilyl bonded phases in reversed-phase liquid chromatography has been investigated. Plots of lnk against 1/T (van't Hoff plot) and the enthalpy of transfer (ΔHo) yields linear relationships under the conditions studied. The ΔHo values of the aromatic hydrocarbons and n-alkyl benzoates are higher than those of the polar compounds due to their higher level of interaction with the stationary phase. A linear plot of ΔHo vs. ΔSo suggest that the retention process, which is essentially controlled by non-specific (dispersive) interactions between the solutes and the bonded ligands, is identical for all cases evaluated. The existence of similar retention mechanisms is confirmed by the constant value of the enthalpy-entropy compensation temperature of the columns for a given class of componds. As expected, decreasing the methanol content (% v/v) of the mobile phase results in increased eluite retention times. The methylene and phenyl selectivities are found to be independent of the carbon content of the stationary phases and varied only with the eluent composition. In addition to their high stability under aggressive mobile phase conditions as previously reported, the results of this study generally showed that the solute retention process on oligomeric phases are similar to those exhibited by the conventional reversed phases.  相似文献   

7.
The effect of varying mobile phase composition across a ternary space between two binary compositions is examined, on four different reversed-phase stationary phases. Examined stationary phases included endcapped C8 and C18, as well as a phenyl phase and a C18 phase with an embedded polar group (EPG). Mobile phases consisting of 50% water and various fractions of methanol and acetonitrile were evaluated. Retention thermodynamics are assessed via use of the van’t Hoff relationship, and retention mechanism is characterized via LSER analysis, as mobile phase composition was varied from 50/50/0 water/methanol/acetonitrile to 50/0/50 water/methanol acetonitrile. As expected, as the fraction of acetonitrile increases in the mobile phase, retention decreases. In most cases, the driving force for this decrease in retention is a reduction of the enthalpic contribution to retention. The entropic contribution to retention actually increases with acetonitrile content, but not enough to overcome the reduction in the enthalpic contribution. In a similar fashion, as methanol is replaced with acetonitrile, the v, e, and a LSER system constants change to favor elution, while the s and c constants change to favor retention. The b system constant did not show a monotonic change with mobile phase composition. Overall changes in retention across the mobile phase composition range varied, based on the identity of the stationary phase and the composition of the mobile phase.  相似文献   

8.
9.
Summary The solvation parameter model is used to characterize the retention properties of a cyanopropylsiloxanebonded, silica-based sorbent with methanol, acetonitrile, tetrahydrofuran, and isopropanol in water as mobile phases. The system constants over the composition range 1 to 50 % (v/v) organic solvent indicate that retention occurs because of the relative ease of cavity formation in the solvated stationary phase compared to the same process in the predominantly aqueous mobile phase as well as from more favorable stationary phase interactions with solutes containing π- and n-electrons. The capacity of the solute for dipole-type interactions is not important whereas all hydrogen-bond-type interactions result in reduced retention. Graphing the system constants as a function of mobile phase composition provides a simple mechanism for interpreting the change in capacity of the chromatographic system for retention in terms of changes in the relative weighting of fundamental intermolecular interactions. A comparison is also made with the retention properties of an octadecylsiloxane-bonded, silica-based sorbent with 30 % (v/v) methanol in water as the mobile phase and the extraction characteristics of a porous polymer sorbent with 1 % (v/v) methanol, acetonitrile, tetrahydrofuran, and isopropanol in water as the sample processing solvent. Changes in sorbent selectivity due to selective uptake of the processing solvent are much smaller for the cyanopropylsiloxane-bonded sorbent than the results found for a porous polymer sorbent.  相似文献   

10.
Summary The solvation parameter model is used to characterize the retention properties of a cyanopropylsiloxane-bonded, silica-based sorbent with methanol, acetonitrile, tetrahydrofuran, and isopropanol in water as mobile phases. The system constants over the composition range 1 to 50% (v/v) organic solvent indicate that retention occurs because of the relative ease of cavity formation in the solvated stationary phase compared to the same process in the predominantly aqueous mobile phase as well as from more favorable stationary phase interactions with solutes containing - and n-electrons. The capacity of the solute for dipole-type interactions is not important whereas all hydrogen-bond-type interactions result in reduced retention. Graphing the system constants as a function of mobile phase composition provides a simple mechanism for interpreting the change in capacity of the chromatographic system for retention in terms of changes in the relative weighting of fundamental intermolecular interactions. A comparison is also made with the retention properties of an octadecylsiloxane-bonded, silica-based sorbent with 30% (v/v) methanol in water as the mobile phase and the extraction characteristics of a porous polymer sorbent with 1% (v/v) methanol, acetonitrile, tetrahydrofuran, and isopropanol in water as the sample processing solvent. Changes in sorbent selectivity due to selective uptake of the processing solvent are much smaller for the cyanopropylsiloxane-bonded sorbent than the results found for a porous polymer sorbent.  相似文献   

11.
The solvation parameter model is used to elucidate the retention mechanism on a perfluorohexylpropylsiloxane-bonded (Fluophase RP) and octadecylsiloxane-bonded (Betasil C18) stationary phases based on the same silica substrate with acetonitrile–water and methanol–water mobile phase compositions. Dewetting affects the retention properties of Fluophase RP at mobile phase compositions containing less than 20% (v/v) acetonitrile or 40% (v/v) methanol. It results in a loss of retention due to an unfavorable change in the phase ratio as well as changes in specific intermolecular interactions. Steric repulsion reduces retention of bulky solutes on fully solvated Betasil C18 with methanol–water (but not acetonitrile–water) mobile phase compositions but is not important for Fluophase RP. The retention of weak bases is affected by ion-exchange interactions on Fluophase RP with acetonitrile–water, and to a lesser extent, methanol-water mobile phases but these are weak at best for Betasil C18. The system constants of the solvation parameter model and retention factor scatter plots are used to compare selectivity differences for Fluophase RP, Betasil C18 and a perfluorophenylpropylsiloxane-bonded silica stationary phase Discovery HS F5 for conditions where incomplete solvation, steric repulsion and ion-exchange do not significantly contribute to the retention mechanism. Lower retention on Fluophase RP results from weaker dispersion and/or higher cohesion moderated to different extents by polar interactions since solvated Fluophase RP is a stronger hydrogen-bond acid and more dipolar/polarizable than Betasil C18. Retention factors for acetonitrile–water mobile phases are highly correlated for Fluophase RP and Betasil C18 except for compounds with a large excess molar refraction and weak hydrogen-bonding capability. Selectivity differences are more significant for methanol–water mobile phases. Retention factors on Fluophase RP are strongly correlated with those on Discovery HSF5 for acetonitrile–water mobile phases while methanol–water mobile phases retention on Fluophase RP is a poor predictor of the retention order on Discovery HS F5.  相似文献   

12.
A surface-confined ionic liquid (SCIL) and a commercial quaternary amine silica-based stationary phase were characterized employing the linear solvation energy relationship (LSER) method in binary methanol/water mobile phases. The retention properties of the stationary phases were evaluated in terms of intermolecular interactions between 28 test solutes and the stationary phases. The comparison reveals a difference in the hydrophobic and hydrogen bond acceptance interaction properties between the two phases. The anion exchange retention mechanism of the SCIL phase was demonstrated using nucleotides. The utility of the SCIL phase in predicting logk IL/water values by chromatographic methods is also discussed.  相似文献   

13.
The system constants of the solvation parameter model are used to prepare system maps for the retention of small neutral compounds on an ethyl-bridged, ocatadecylsiloxane-bonded superficially porous silica stationary phase (Kinetex EVO C18) for aqueous mobile phases containing 10–70% (v/v) methanol or acetonitrile. Electrostatic interactions (cation-exchange) are important for the retention of weak bases with acetonitrile–water but not methanol–water mobile phase compositions. Compared with a superficially porous octadecylsiloxane-bonded silica stationary phase (Kinetex C18) with a similar morphology but different topology statistically significant differences in selectivity at the 95% confidence level are observed for neutral compounds that vary by size and hydrogen-bond basicity with other intermolecular interactions roughly similar. These selectivity differences are dampened with acetonitrile–water mobile phases, but are significant for methanol–water mobile phase compositions containing <30% (v/v) methanol. A comparison of a totally porous ethyl-bridged, octadecylsiloxane-bonded silica stationary phase (XBridge C18) with Kinetex EVO C18 indicated that they are effectively selectivity equivalent.  相似文献   

14.
Cyclofructan‐based chiral stationary phases were previously shown as a promising possibility for separation of chiral compounds in high performance liquid chromatography. In this work retention and enantiodiscrimination properties of the 3,5‐dimethylphenyl carbamate cyclofructan 7 chiral stationary phase are described in supercritical fluid chromatography. The results obtained in both of the separation methods were compared. A set of compounds with axial or central chirality was used as analytes. The effect of mobile phase composition, that is, addition of different alcohol modifiers and/or trifluoroacetic acid to carbon dioxide, was examined in the supercritical system. Similarly, mobile phases composed of hexane modified with propan‐2‐ol and/or trifluoracetic acid were used in liquid chromatography. A linear free energy relationship model was utilized for characterization of interactions that are decisive for retention and separation in both techniques. Dispersion interactions showed similar negative values using both methods. The main contribution of hydrogen bond acidity was also comparable for both methods. The propensity to interact with n‐ and/or π‐electron pairs of solutes was significant only in the supercritical system.  相似文献   

15.
Calixarene‐bonded stationary phases received growing interest in HPLC as stationary phases with special retention characteristics and selectivity. The commercially available unsubstituted and ptert‐butyl‐substituted Caltrex® columns have been intensively studied and characterized in our workgroup. They can be used as reversed phases, yet they support additional interactions. Especially, their steric, polar and ionic properties differ from conventional alkyl‐bonded phases. However, also the hydrophobic interaction shows differences since adsorption and partition interactions on or in a bonded layer of calixarenes are not similar to those of alkyl‐bonded layers. The relative strength of the hydrophobic properties of the stationary phases has been found depending on the methanol concentration of the mobile phase. Generally, the dependencies of their interaction strengths on mobile‐phase conditions, e.g. the change of the intensity of the hydrogen‐bonding abilities with decreasing methanol content, are not similar from phase to phase either. This probably gives calixarene‐bonded stationary phases enhanced suitability for analyses at extreme compositions of the mobile phase. An overview about the synthesis, retention and selectivity properties of Caltrex® columns is given here.  相似文献   

16.
The system constants of the solvation parameter model are used to prepare system maps for the retention of small neutral compounds on phenylhexylsiloxane- and pentafluorophenylpropylsiloxane-bonded superficially porous silica stationary phases (Kinetex Phenyl-Hexyl and Kinetex F5) for aqueous mobile phases containing 10–70% (v/v) methanol or acetonitrile. Electrostatic interactions (cation exchange) are important for the retention of weak bases for acetonitrile–water mobile phases, but virtually absent for the same compounds for methanol–water mobile phases. The selectivity of the Kinetex Phenyl-Hexyl stationary phase for small neutral compounds is similar to an octadecylsiloxane-bonded silica stationary phase with similar morphology Kinetex C-18 for both methanol–water and acetonitrile–water mobile phase compositions. The Kinetex Phenyl-Hexyl and XBridge Phenyl stationary phases with the same topology but different morphology are selectivity equivalent, confirming that solvation of the interphase region can be effective at dampening selectivity differences for modern stationary phases. Small selectivity differences observed for XTerra Phenyl (different morphology and topology) confirm previous reports that the length and type of space arm for phenylalkylsiloxane-bonded silica stationary phases can result in small changes in selectivity. The pentafluorophenylpropylsiloxane-bonded silica stationary phase (Kinetex F5) has similar separation properties to the phenylhexylsiloxane-bonded silica stationary phases, but is not selectivity equivalent. However, for method development purposes, the scope to vary separations from an octadecylsiloxane-bonded silica stationary phase (Kinetex C-18) to “phenyl phase” of the types studied here is limited for small neutral compounds. In addition, selectivity differences for the above stationary phases are enhanced by methanol–water and largely suppressed by acetonitrile–water mobile phases. For bases, larger selectivity differences are possible for the above stationary phases if electrostatic interactions are exploited, especially for acetonitrile-containing mobile phases.  相似文献   

17.
The linear solvation energy relationship equation developed by Abraham and coworkers was applied to the retention factors k of a series of 20 polar solutes on four chemically different RP-HPLC phases. Three of them were specially synthesized and are functionalized with ether, phenylsulfide or phenylsulfoxide groups. Their retention properties are compared with those of a nonpolar octadecylsiloxane (ODS) phase. The phase properties r, the excess molar refraction; s, the dipolarity; a and b, the hydrogen-bond basicity and acidity; and v, the cavity factor show significant differences on the four phases and are used here to suggest a classification of stationary phases based on the type of interactions that are important for the retention. The hydrophilic system properties r, s, a and b are the reason for different elution orders of a set of solutes on the four phases. The intrinsic hydrophobicity of the system, the v/A ratio (A is the surface coverage in μmol/m2), shows a dependence on the mobile phase composition as do the normalized phase properties r/v, s/v, a/v and b/v. Averaging the constants over a large span of mobile phase composition should be done very carefully. The LSER model is used to predict the elution order on the stationary phases for five phenols which show coelution on ODS. On the phenylsulfide phase they are resolved. Received: 3 December 1998 / Revised: 1 February 1999 / Accepted: 8 February 1999  相似文献   

18.
The goal of the study was to investigate separation mechanism of selected “essential” amino acids (leucine, isoleucine, threonine, tryptophan, proline, and glycine) and vitamin B6 in hydrophilic interaction liquid chromatography (HILIC) with the evaporative light scattering detection. Chromatographic measurements were made on three different HILIC columns: amide-silica (TSK-gel Amide-80), amino-silica (TSK-gel NH2-100), and cross-linked diol (Luna HILIC). The retention behaviour of the analytes was investigated as a function of different binary hydro-organic mobile phases containing 10–90 % (v/v) acetonitrile. The compounds studied were separated under isocratic and gradient conditions. The best results of tested biologically active compounds separation were obtained on the TSK-gel NH2-100 column. TSK-gel NH2 column showed mixed HILIC–ion-exchange mechanism, the highest separation efficiency and better selectivity and resolution for tested analytes than the other studied column, especially at concentration of water in mobile phase lower than 30 % (v/v). Special attention was dedicated to the study of interactions among the stationary phase, mobile phase and the analytes.  相似文献   

19.
Sanli  Senem  Akmese  Bediha  Sanli  Nurullah  Ozkan  Sibel A. 《Chromatographia》2013,76(21):1467-1475

A simple, reliable, and rapid RP-LC method has been developed for the determination of some anticancer drugs (daunorubicin, doxorubicin and vincristine sulfate) in their dosage forms and human urine. These compounds are well separated on a C18 column using the mobile phase consisting of a mixture of acetonitrile (50:50; v/v) at a flow rate of 1.5 mL min−1. The analyte peaks were detected at 235 nm for doxorubicin and daunorubicin, and 220 nm for vincristine. Linearity was obtained in different concentration ranges between 0.10 and 12 μg mL−1 for all compounds. Good sensitivity for all analytes was observed with DAD detection. LOD and LOQ of the method were found satisfying. The proposed method has been extensively validated in accordance with ICH guidelines and obtained results proved that the proposed method was precise, accurate, selective, and sensitive for simultaneous analysis of studied compounds. All analytical procedures including sample preparation, flow rate, and run time were at low levels. Also, pK a values were determined using the dependence of the retention factor on the pH of the mobile phase. The effect of the mobile phase composition on the ionization constant was studied by measuring the pK a at different methanol–water mixtures, ranging between 45 and 60 % (v/v).

  相似文献   

20.
Chromatographic properties of five steroid drugs: cortisone, hydrocortisone, methylprednisolone, prednisolone and norgestrel have been studied by normal-, reversed-phase and hydrophilic neutral cyano-bonded silica stationary phase with five binary mobile phases (acetonitrile-water, acetonitrile-DMSO, acetonitrile-methanol, acetone-petroleum ether, acetone-water) in which the concentration of organic modifier was varied from 0 to 100% (v/v). This study reports the optimization of steroid hormones separation. Chromatographic retention data and possible retention mechanisms are discussed. Separation abilities of mobile and stationary phases were studied using the principal component analysis method. The best separation of methylprednisolone and prednisolone is with a chromatographic system included silica gel as stationary phase and mixture of acetonitrile and DMSO (10:90 v/v). These two anti-inflammatory drugs can be fast separated from norgestrel when CN is used as stationary phase and acetone and water (40:60 v/v) as mobile phase. The highest values of the parameter Δ(ΔG°) and alfa for cortisone and hydrocortisone was observed in case of using CN as stationary phase and water-acetonitryle (40:60 v/v) as mobile phase.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号