首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
This study investigated the occurrence of disinfection by-products (DBPs) (trihalomethanes (THMs), haloacetic acids (HAAs), halonitriles (HANs), halonitromethane (TCNM) and haloketones (HKs)) in different type of swimming pools in the area of Thessaloniki, northern Greece by employing the EPA methods 551.1 and 552.3. Moreover, general water quality parameters (pH, residual chlorine, dissolved organic carbon, UV254 absorption, total nitrogen, alkalinity and conductivity) were also measured. The concentrations of DBPs showed great variability among swimming pools as well as within the same pool between sampling campaigns. HAAs exhibited the highest concentrations followed by THMs, HANs, TCNM and HKs. Exposure doses for four age groups (3–<6 y, 6–<11 y, 11–<16 y and adults) were calculated. Route-specific exposures varied among DBPs groups. Inhalation was the dominant exposure route to THMs and TCNM (up to 92–95%). Ingestion and dermal absorption were the main exposure routes to HAAs (40–82% and 18–59%, respectively), depending on the age of swimmers. HANs contributed up to 75% to the calculated cytotoxicity of pool water. Hazard indices for different exposure routes were <1, suggesting non-carcinogenic risk. Inhalation posed the higher carcinogenic risk for THMs, whereas risk via oral and dermal routes was low. Ingestion and dermal contact posed the higher risk for HAAs. Risk management strategies that minimise DBPs exposure without compromising disinfection efficiency in swimming pools are necessary.  相似文献   

2.
This work was carried out based on the principles of biological effectiveness and environmental acceptability of the International Maritime Organization (IMO). The non-native red tide organisms Prorocentrum donghaiense and Scrippsiella trochoidea were selected to examine ·OH inactivation to meet the IMO standard of ballast water discharge (<?10 cells/mL). The effective quantum yield of photosystem II of algal chlorophyll rapidly decreased to zero within a contact time of only 6 s. Under scanning electron microscope (SEM) observation, the algal cells treated with the ·OH inactivation dose still had an intact shape and did not release cellular material, and thus, there are no risks associated with oceanic environmental safety. The potential disinfection byproducts (DBPs) from discharged ship’s ballast water at high salinity (33.7 PSU) treated at a maximum TRO dose of 2.41 mg/L were analyzed by 5-day storage experiments. The results indicated that the contents of bromate, trihalomethanes (THMs), haloacetic acids (HAAs) and haloacetonitriles (HANs) were below the WHO drinking water standards. Therefore, discharged ship’s ballast water with ·OH inactivation is safe for oceanic environments.  相似文献   

3.
臭氧化对水厂水中消毒副产物生成势的影响   总被引:1,自引:0,他引:1  
张强  刘燕 《化学通报》2016,79(1):88-91
以某饮用水厂沿程工艺出水为研究对象,研究了臭氧化预处理对水体中消毒副产物(DBPs)氯化生成势的影响。结果表明,水厂生物处理单元产生的胞外聚合物(EPS)和溶解性微生物产物(SMP)等生物源有机物是非常有效的DBPs前体物,但其更易于氯化生成三卤甲烷(THMs)而非卤乙酸(HAAs)。水厂水中存在的THMs前体物主要是各类大分子量有机物,并且臭氧工艺对其有较好的氧化去除效果。水厂水中经臭氧氧化产生的小分子量有机物可能是更为有效的一氯乙酸(MCAA)和一溴乙酸(MBAA)前体物。此外,当水体中三氯乙酸(TCAA)前体物浓度较高时,臭氧工艺对TCAA生成势具有很好的去除效果。  相似文献   

4.
Drinkable water supplied by aqueducts undergoes preliminar potabilization which, in Italy, is mainly accomplished by chlorine addition. The bactericidal action involved in this process is always accompanied by chlorination and oxidation of organic species (mainly humic and fulvic acids) naturally present in treated waters, so that many disinfection by-products (DBPs) are formed, such as trihalomethanes (THMs) and halo-acetic acids (HAA), which can represent a chemical risk for public health. The aim of this study was the monitoring of DBPs in drinking water disinfected by chlorination, supplied by four different aqueducts of Central Friuli (Italy). DBP evaluations were performed in water samples consisting of both input and output of disinfection plants. The results of analytical determinations were worked out to provide the THM and HAA parameters for disinfected waters, while in feeding waters the following different conventional parameters were adopted: (i) trihalomethanes formation potential (THMFP), (ii) halo-acetic acids formation potential (HAAFP) and (iii) UV absorbance at 254 nm (UV254). The quite moderate content of chlorinated products found in all samples considered highlighted the excellent quality of potabilized waters available in Central Friuli. Moreover, our results confirmed that the majority of DBPs formed when chlorine is used for water disinfection consists of THMs, while chlorites and chlorates prevailed when potabilization is accomplished by using chlorine dioxide. Finally, simple UV254 monitoring turned out to be a profitable approach for the determination of chlorinated by-products only when THMs prevail among DBPs.  相似文献   

5.
The prevalence of water disinfection byproducts in drinking water supplies has raised concerns about possible health effects from chronic exposure to these compounds. To support studies exploring the relation between exposure to trihalomethanes (THMs) and health effects, we have developed an automated analytical method using headspace solid-phase microextraction coupled with capillary gas chromatography and mass spectrometry. This method quantitates trace levels of THMs (chloroform, bromodichloromethane, dibromochloromethane, and bromoform) and methyl tertiary-butyl ether in tap water. Detection limits of less than 100 ng/L for all analytes and linear ranges of three orders of magnitude are adequate for measuring the THMs in tap water samples tested from across the United States. THMs are stable for extended periods in tap water samples after quenching of residual chlorine and buffering to pH 6.5, thus enabling larger epidemiologic field studies with simplified sample collection protocols.  相似文献   

6.
A new high performance ion chromatographic method has been developed for the separation of the nine chlorinated-brominated haloacetic acids (HAAs) that are the disinfection by-products of chlorination of drinking water, using a macrocycle-based adjustable-capacity anion-exchange separator column (IonPac Cryptand A1). A gradient method based on theoretical and experimental considerations has been optimized in which 10 mM NaOH-LiOH step gradient was performed at the third minute of the analysis. The optimized method allowed us to separate the nine HAAs and seven possibly interfering inorganic anions in less than 25 min with acceptable resolution. The minimum concentrations detectable for HAAs were between 8.0 (MBA) and 210 (TBA) microg L(-1), with linearity included between 0.9947 (TBA) and 0.9998 (MBA). To increase sensitivity, a 25-fold preconcentration step on a reversed phase substrate (LiChrolut EN) has been coupled. Application of this method to the analysis of haloacetic acids in real tap water samples is illustrated.  相似文献   

7.
Haloacetic acids (HAAs) are by-products of the chlorination of drinking water containing natural organic matter and bromide. A simple and sensitive method has been developed for determination of ten HAAs in drinking water. The pressure-assisted electrokinetic injection (PAEKI), an on-line enrichment technique, was employed to introduce the sample into a capillary electrophoresis (CE)–electrospray ionization–tandem mass spectrometry system (ESI-MS/MS). HAAs were monitored in selected reaction monitoring mode. With 3 min of PAEKI time, the ten major HAAs (HAA10) in drinking water were enriched up to 20,000-fold into the capillary without compromising resolution. A simple solid phase clean-up method has been developed to eliminate the influence of ionic matrices from drinking water on PAEKI. Under conditions optimized for mass spectrometry, PAEKI and capillary electrophoresis, detection limits defined as three times ratio of signal to noise have been achieved in a range of 0.013–0.12 μg L−1 for ten HAAs in water sample. The overall recoveries for all ten HAAs in drinking water samples were between 76 and 125%. Six HAAs including monochloro- (MCAA), dichloro- (DCAA), trichloro- (TCAA), monobromo- (MBAA), bromochloro- (BCAA), and bromodichloroacetic acids (BDCAA) were found in tap water samples collected.  相似文献   

8.
Suedee R  Intakong W  Dickert FL 《Talanta》2006,70(1):194-201
An alternative screening method for haloacetic acids (HAAs) disinfection by-products in drinking water is described. The method is based on the use of piezoelectric quartz crystal microbalance (QCM) transducing system, where the electrode is coated with a trichloacetic acid-molecularly imprinted polymer (TCAA-MIP). This MIP comprises a crosslinked poly(ethyleneglycoldimethacrylate-co-4-vinylpyridine). The coated QCM is able to specifically detect the analytes in water samples in terms of the mass change in relation to acid-base interactions of the analytes with the MIP. The TCAA-MIP coated QCM showed high specificity for the determination of TCAA in aqueous solutions containing inorganic anions, but its sensitivity reduced in water samples containing hydrochloric acid due to a mass loss at the sensor surface. Cross-reactivity studies with HAA analogs (dichloro-, monochloro-, tribromo-, dibromo-, and monobromo-acetic acids) and non-structurally related TCAA molecules (acetic acid and malonic acid) indicated that recognition of the structurally related TCAA compounds by the TCAA-MIP-based QCM is due to a carboxylic acid functional group, and probably involves a combination of both size and shape selectivity. The total response time of sensor is in the order of 10 min. The achieved limits of detection for HAAs (20-50 μg l−1) are at present higher than the actual concentrations found in real-life samples, but below the guidelines for the maximum permissible levels (60 μg l−1 for mixed HAAs). Recovery studies with drinking water samples spiked with TCAA or spiked with mixtures of HAAs revealed the reproducibility and precision of the method. The present work has demonstrated that the proposed assay can be a fast, reliable and inexpensive screening method for HAA contaminants in water samples, but further refinement is required to improve the limits of detection.  相似文献   

9.
詹未  韩志宇  李勇  刘非  张永 《色谱》2021,39(7):758-763
目前卤乙腈作为我国非受监管的消毒副产物广泛存在于饮用出厂水中,可产生多种毒性,缺乏相关标准检测依据。研究建立了吹扫捕集-气相色谱-三重四极杆质谱同时测定饮用出厂水中氯乙腈、二氯乙腈、三氯乙腈、溴乙腈、溴氯乙腈、二溴乙腈的分析方法。吹扫捕集技术应用于卤乙腈的测定,实现了样品经采集后全程自动测定,有害试剂零消耗。同时吹扫捕集法相比固相微萃取法,样品制备的速度更快,成本更低。实验考察了样品6 h内目标组分的稳定性;比较了7#(2,6-二苯基对苯醚)、10#(2,6-二苯基对苯醚/硅胶/碳分子筛)、11#(疏水活性炭)、12#(疏水活性炭)捕集阱对目标组分响应的影响;考察了4种型号色谱柱(VF-5、Rxi-624、DB-VRX、HP-INNOWAX)对色谱峰形的影响。实验条件经优化,确定了吹扫捕集采用10#捕集阱,将25 mL水样于35 ℃吹扫11 min,于190 ℃解析1 min。气相色谱分流进样,分流比1∶10,使用Rxi-624Sil MS色谱柱(60 m×0.25 mm×1.40 μm)程序升温分离,线速度30 cm/s,在MRM模式下检测,外标法定量。结果表明,6种卤乙腈的基质效应为0.85~1.09,在各自范围内线性良好,r>0.9991,方法检出限为0.8~120.0 ng/L,定量限为1.5~300.0 ng/L, 3水平平均加标回收率为84.2%~106%,相对标准偏差(RSD)为1.81%~10.7%。对38份出厂水样品进行测定,卤乙腈总检出率为92.1%,含量为0.0101~1.28 μg/L。该方法高效、灵敏、环保,为针对卤乙腈类新兴消毒副产物开展监测及健康风险评估提供了优质的技术选择。  相似文献   

10.
On the basis of gas chromatography(GC) coupled with a short capillary column and an electron capture detector(ECD), a simple and rapid method for the determination of five haloacetic acids(HAAs) in drinking water was developed by the optimization of derivation conditions and the modification of gas chromatographic program. HAAs formation potential(HAAFP) of the reaction of humic acid with chlorine was determined via this method. The major advantages of the method are the simplicity of chromatographic temperature program and the short run time of GC. Dichloroacetic acid(DCAA) and Trichloroacetic acid(TCAA), which were detected in the determination of HAAFP, were rapidly formed in the first 72 h of the reaction of humic acid with chlorine. HAAFP of the reaction of humic acid with chlorine increased with the increase in the concentrations of humic acid and chlorine. The average HAAFP of the reaction of humic acid with chlorine was 39.9 μg/mg TOC under the experimental conditions. When the concentration of humic acid was 4 mg/L, the concentration of HAAs, which were produced in the reaction of humic acid with chorine, may exceed MCL of 60 μg/L HAAs as the water quality standards for urban water supply of China and the first stage of US EPA disinfection/disinfection by-products(D/DBP) rule; when the concentration of humic acid was 2 mg/L, the concentration of HAAs may exceed MCL of 30 μg/L HAAs for the second stage of US EPA D/DBP rule. When humic acid was reacted with chlorine dioxide, only DCAA was detected with a maximum concentration of 3.3 μg/L at a humic acid content of 6 mg/L. It was demonstrated that the substitution of chlorine dioxide for chorine may entirely or partly control the formation of HAAs and effectively reduce the health risk associated with disinfected drinking water.  相似文献   

11.
Zhao  Ge  Wang  Sheng  Fu  Yufeng  Yu  Jingjing  Wang  Bing  Xie  Fuwei  Xie  Jianping 《Chromatographia》2014,77(11):813-820

In this paper, a sensitive accurate method for the determination of heterocyclic aromatic amines (HAAs) in cigarette smoke has been developed and validated using solid-phase extraction coupled with liquid chromatography–tandem mass spectrometry. A calibration curve was obtained with representative cigarette smoke using the standard addition method to compensate for matrix effects because the smoke of different cigarettes shows similar matrix effects. With this method, the accuracy of the method can be improved using a common analog of HAAs, which will greatly reduce the expense of using an isotope-labeled internal standard. Validation results showed that the method has high sensitivity (quantification limits of 0.08–0.56 ng cig−1), good reproducibility (RSD 6.37–9.31 %) and satisfactory recoveries (81.0–111 %). With this method, the emissions of HAAs in 30 commercial cigarette samples were analyzed and compared.

  相似文献   

12.
Since disinfection by-products are a growing concern, it is important to know their quantities in water treatment plants before they are released to the public. As a result, there is a requirement for constant monitoring of disinfection by-products (DBPs), which can have major consequences for human health and productivity. Consequently, in previous studies, several models for predicting disinfection byproduct formation in drinking water have been developed which were either linear/log-linear, hybrid or neural network (radial basis function). In this study, an adaptive neuro-fuzzy inference system (ANFIS) is proposed for predicting trihalomethane levels in real distribution systems. To train and verify the proposed model, 24 sets of data were used, including THMs levels (TCM, BDCM, DBCM and T-THM levels) and five parameters (pH, temperature, UVA254, residual chlorine, and dissolved organic carbon). As compared to response surface modeling (RSRM) coefficient of determination, R2 is between 0.727 < R2 < 0.886, average absolute deviation, AAD = 4.07–10.99 %), MAE = 0.01 – 0.978, and RMSE = 0.017 – 1.449. Further, ANFIS for THMs (T-THMs, TCM, BDCM, and DBCM) prediction consistently show higher regression coefficients between 0.956 < R2 < 0.989, average absolute deviation, AAD = 0.350 – 1.977 %), MAE = 0.002 – 0.133, and RMSE = 0.007 – 0.401, Consequently, based on the statistical indices obtained, ANFIS, on the other hand, proved to be effective for predicting the formation of THMs, and thus allowed improved DBPs monitoring in water treatment systems.  相似文献   

13.
Chlorination is the most common method worldwide for the disinfection of drinking water. However, the identification of potentially toxic products from this method has encouraged the development of alternative disinfection technologies. Among them, electrochemical disinfection has emerged as one of the more feasible alternatives to chlorination. This article reviews electrochemical systems that can contribute to drinking water disinfection and underscores the efficiency of recently developed diamond films in chlorine-free electrochemical systems.  相似文献   

14.
《中国化学会会志》2017,64(10):1227-1234
This paper describes an optimized method for the quick screening of low levels of haloacetonitriles (HANs), a nitrogenous disinfection byproduct. The method is especially geared toward screening of water used for drinking and in swimming pools. The method is based on vortex‐assisted liquid–liquid microextraction (VALLME), which is carried out before determination of the gathered samples by gas chromatography‐mass spectrometry (GC‐MS). Factors that can potentially affect the extraction efficiency of the desired trace chemicals from the gathered sample were enhanced using the Box–Behnken design method. The optimal VALLME parameters for a 10‐mL water sample (pH 4, containing 3 g of sodium sulfate), according to the Box–Behnken design method, are extractant 160 μL dichloromethane and vortex extraction time of 1 min at the maximum speed (2500 rpm). The limits of quantitation calculated were 16–35 ng/L. Precision for both intra‐ and inter‐day analysis was also calculated, which was less than 11% on three concentration levels. Mean extraction recovery, otherwise known as trueness, was between 71 and 92%. The developed method was applied successfully to extract HANs from drinking and swimming pool water samples.  相似文献   

15.
Wu F  Gabryelski W  Froese K 《The Analyst》2002,127(10):1318-1323
A fast headspace solid-phase microextraction gas chromatography method for micro-volume (0.1 mL) samples was optimized for the analysis of haloacetic acids (HAAs) in aqueous and biological samples. It includes liquid-liquid microextraction (LLME), derivatization of the acids to their methyl esters using sulfuric acid and methanol after evaporation, followed by headspace solid-phase microextraction with gas chromatography and electron capture detection (SPME-GC-ECD). The derivatization procedure was optimized to achieve maximum sensitivity using the following conditions: esterification for 20 min at 80 degrees C in 10 microL methanol, 10 microL sulfuric acid and 0.1 g anhydrous sodium sulfate. Multi-point standard addition method was used to determine the effect of the sample matrix by comparing with internal standard method. It was shown that the effect of the matrix for urine and blood samples in this method is insignificant. The method detection limits are in the range of 1 microg L(-1) for most of the HAAs, except for monobromoacetic acid (MBAA) (3 microg L(-1)) and for monochloroacetic acid (MCAA) (16 microg L(-1)). The optimized procedure was applied to the analysis of HAAs in water, urine and blood samples. All nine HAAs can be separated in < 13 min for biological samples and < 7 min for drinking water samples, with total sample preparation and analysis time < 50 min. Analytical uncertainty can increase dramatically as the sample volume decreases; however, similar precision was observed with our method using 0.1 mL samples as with a standard method using 40 mL samples.  相似文献   

16.
Honglan Shi  Craig Adams 《Talanta》2009,79(2):523-183
Haloacetic acids (HAAs) and bromate are toxic water disinfection by-products (DBPs) that the U.S. Environmental Protection Agency has regulated in drinking water. Iodoacetic acids (IAAs) are the emerging DBPs that have been recently found in disinfected drinking waters with higher toxicity than their corresponding chloro- and bromo-acetic acids. This study has developed a new rapid and sensitive method for simultaneous analysis of six brominated and four iodinated acetic acids, bromate, iodate, bromide, and iodide using ion chromatography-inductively coupled plasma-mass spectrometry (IC-ICP-MS). Mono-, di- and tri-chloroacetic acids are not detected by this method because the sensitivity of ICP-MS analysis for chlorine is poor. Following IC separation, an Elan DRC-e ICP-MS was used for detection, with quantitation utilizing m/z of 79, 127, and 74 amu for Br, I, and Ge (optional internal standard) species, respectively. Although the primary method used was an external standard procedure, an internal standard method approach is discussed herein as well. Calibration and validation were done in a variety of natural and disinfection-treated water samples. The method detection limits (MDLs) in natural water ranged from 0.33 to 0.72 μg L−1 for iodine species, and from 1.36 to 3.28 μg L−1 for bromine species. Spiked recoveries were between 67% and 123%, while relative standard deviations ranged from 0.2% to 12.8% for replicate samples. This method was applied to detect the bromine and iodine species in drinking water, groundwater, surface water, and swimming pool water.  相似文献   

17.
The main degradation by-products of the herbicide chlortoluron formed during water disinfection with HOCl/ClO(-) have been separated and identified by liquid chromatography/electrospray ionisation sequential mass spectrometry (LC/ESI-MS(n)). Chlorination and hydroxylation reactions seem to occur exclusively on the aromatic ring of chlortoluron, leading to by-products which show characteristic fragmentation patterns. Indeed, chlortoluron-like ESI spectra were always observed for chlorinated by-products, showing only a fragment at m/z 72. In contrast, hydroxylated and chloro/hydroxylated by-products gave a much more complex fragmentation pattern that could be elucidated by MS(n) (n = 1-4) experiments. A mechanistic scheme rationalising the observed fragmentation pattern is proposed and discussed. Copyright 2000 John Wiley & Sons, Ltd.  相似文献   

18.
A simple and efficient liquid-phase microextraction (LPME) technique using a supported liquid hollow fiber membrane, in conjunction with gas chromatography-electron capture detector has been developed for extraction and determination of trihalomethanes (THMs) in water samples. THMs were extracted from water samples through an organic extracting solvent impregnated in the pores and filled inside the porous hollow fiber membrane. Our simple conditions were conducted at 35 degrees C with no stirring and no salt addition in order to minimize sample preparation steps. Parameters such as types of hollow fiber membranes, extracting solvents and extraction time were studied and optimized. The method exhibited enrichment factors ranged from 28- to 62-fold within 30 min extraction time. The linearity of the method ranged from 0.2 to 100 microg l(-1). The limits of detection were in the low microg l(-1) level, ranging between 0.01 and 0.2 microg l(-1). The recoveries of spiked THMs at 5 microg l(-1) in water were between 98 and 105% with relative standard deviations (RSDs) less than 4%. Furthermore, the method was applied for determination of THMs in drinking water and tap water samples was reported.  相似文献   

19.
复合功能树脂对水体中天然有机酸的吸附   总被引:2,自引:0,他引:2  
合成了胺基修饰复合功能树脂WJN-07, 研究了富里酸、单宁酸和没食子酸在树脂上的吸附行为. 与去除DOM的商品树脂XAD-7相比, 树脂WJN-07对3种天然有机酸有较高的吸附容量, 这是由于新型树脂表面具有修饰的化学官能团和丰富的微孔结构所致. 选择单宁酸作为吸附质进行吸附热力学研究, 结果表明, 树脂WJN-07对单宁酸的吸附为吸热过程, 以化学吸附为主导. 溶液中重金属离子Pb2+作为影响树脂吸附性能的重要因素在实验中得到证实, 其作用机理也得到合理解释.  相似文献   

20.
Caro J  Gallego M 《Talanta》2008,76(4):847-853
A sensitive and reliable method has been developed for the determination of trihalomethanes (THMs) in air samples through adsorption in sorbent tubes and thermal desorption (TD) of the compounds, followed by gas chromatography (GC)–mass spectrometry (MS) analysis. Three commercial sorbent materials were compared in terms of adsorption efficiency and breakthrough volume, finding Chromosorb 102 to be the most appropriate adsorbent for air sampling. The method allows us to reach detection limits of 0.03 ng (0.01 μg m−3 for 3 l of air), linear ranges from 0.1 to 2000 ng and specific uncertainties of ca. 5.0 ± 0.2 ng for all THMs. Several salts were tested to reduce water retention (from the humid air of an indoor swimming pool) at the sampling stage, Na2SO4 being the one that provides optimum efficiency. The method was validated by a new recovery study in which several tubes with and without adsorbent were spiked with THMs and analyzed by TD-GC/MS, recoveries ranging from 92% to 97% for all the compounds. Finally, the performance of the method was evaluated through the analysis of ambient air samples from an indoor swimming pool and alveolar air samples from swimmers to assess their THM uptake. THMs were found to be stable in the sorbent tubes for at least 1 month when stored at 4 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号