首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Al/P- and Ga/P-based frustrated Lewis pairs (FLPs) reacted with an azirine under mild conditions under cleavage of the heterocycle on two different positions. Opening of the C−C bond yielded an unusual nitrile–ylide adduct in which a C−N moiety coordinated to the FLP backbone. Cleavage of a C−N bond afforded the thermodynamically favored enamine adduct with the N atom bound to P and Al or Ga atoms. Ring closure was observed upon treatment of an Al/P FLP with electronically unsaturated substrates (4-(1-cyclohexenyl)-1-aza-but-1-en-3-ynes) and yielded by C−N bond formation hexahydroquinoline derivatives, which coordinated to the FLP through P−C and Al−C bonds. Diphenylcyclopropenone showed a diverse reactivity, which depending on steric shielding and the polarizing effect of Al or Ga atoms afforded different products. An AltBu2/P FLP yielded an adduct with the C=O group coordinated to P and Al. The dineopentyl derivative gave an equilibrium mixture consisting of a similar product and a simple adduct with O bound to Al and a three-coordinate P atom. Both compounds co-crystallize. The Ga/P FLP only formed the simple adduct with the same substrate. Rearrangement resulted in all cases in C3-ring cleavage and migration of a mesityl group from P to a former ring C atom by C−C bond formation. Diphenylthiocyclopropenone (evidence for the presence of P=C bonds) and an imine derivative afforded similar products.  相似文献   

2.
3H-Phosphaallenes, R−P=C=C(H)C−R’ ( 3 ), are accessible in a multigram scale on a new and facile route and show a fascinating chemical reactivity. BH3(SMe2) and 3 a (R=Mes*, R’=tBu) afforded by hydroboration of the C=C bonds of two phosphaallene molecules an unprecedented borane ( 7 ) with the B atom bound to two P=C double bonds. This compound represents a new FLP based on a B and two P atoms. The increased Lewis acidity of the B atom led to a different reaction course upon treatment of 3 a with H2B-C6F5(SMe2). Hydroboration of a C=C bond of a first phosphaallene is followed in a typical FLP reaction by the coordination of a second phosphaallene molecule via B−C and P−B bond formation to yield a BP2C2 heterocycle ( 8 ). Its B−P bond is short and the B-bound P atom has a planar surrounding. Treatment of 3 a with tBuLi resulted in deprotonation of the β-C atom of the phosphaallene ( 9 ). The Li atom is bound to the P atom as demonstrated by crystal structure determination, quantum chemical calculations and reactions with HCl, Cl-SiMe3 or Cl-PtBu2. The thermally unstable phosphaallene Ph−P=C=C(H)-tBu gave a unique trimeric secondary product by P−P, P−C and C−C bond formation. It contains a P2C4 heterocycle and was isolated as a W(CO)4 complex with two P atoms coordinated to W ( 15 ).  相似文献   

3.
Formation and Structure of the iso -Tetraphosphane P(PtBu2)3: a Molecule with a Planar Three-coordinated P Atom The iso-tetraphosphane P(PtBu2)3 ( 1 ) was obtained by irradiating tBu2P–P=P(Me)tBu2 ( 3 ). 1 forms hexagonal crystals (space group P63/m) with a = 1005,63(8), c = 1621,4(2) pm, Z = 2. The P(PtBu2)3 molecules are arranged in a hexagonally close packed lattice. The four P atoms in each molecule are coplanar with P–P bond distances 219.08(4) pm and P–P–P angles 120°. The observed planar geometry is in accordance with ab initio calculations.  相似文献   

4.
The red-orange tetrasilacyclobutene 1 (R*=SitBu3) is formed quantitatively by the reaction of tetrasilatetrahedrane 2 and iodine. Surprisingly, water and methanol do not react with 1 with addition to the Si−Si double bond, but instead with replacement of the silicon-bound iodine atoms with oxygen or the methoxy group, respectively. The substitutions possibly proceed by dissociative activation via intermediate 3 .  相似文献   

5.
A room‐temperature‐stable crystalline cyclic (alkyl)(amino)nitrenium cation 2 features cationic nitrogen atom with a smaller HOMO–LUMO gap compared to that of a 1,2,3‐triazolium 5 (an N‐heterocyclic nitrenium cation). The low‐lying LUMO of 2 results in an enhanced electrophilicity, which allowed for the formation of Lewis adducts with neutral Lewis bases, such as Me3P, nBu3P, and IiPr. The N‐based Lewis acid 2 also forms an FLP with tBu3P but subsequently reacts with (PrS)2 to cleave the S?S bond. Both experimental and theoretical results suggest that the Lewis acidity of 2 is stronger than its N3 analogues.  相似文献   

6.
Treatment of the geminal Ga/P‐based frustrated Lewis pair (FLP) Mes2P–C(GatBu2)=C(H)–Ph ( 1 ) with HX (X = F, Cl, Br, I) afforded the corresponding adducts 2 with the protons bound to the P and the halide anions coordinated to the Ga atoms. Short intramolecular contacts may indicate P–H ··· X hydrogen bonding interactions. The Br and I compounds ( 2c , 2d ) were accessible in moderate yields even when aqueous solutions of the acids were employed. These unexpected reactions confirm the surprising stability of FLP 1 towards protolysis. Heterocumulenes R–N=C=Y (Y = O, S) and 1 yielded adducts with two different structural motifs. The N=C=Y groups were coordinated to the FLP either via the C=Y (Y = S; Ph–N=C=O) or the C=N bonds (Ph–N=C=O, Et–N=C=O). For phenyl isocyanate the C=O bonded isomer was observed in the solid state, while both isomeric forms were detected in solution. Steric shielding and the hardness of the atoms may influence the formation of the respective isomer. Cleavage of the C=S bonds of isothiocyanates was observed for the first time and afforded a sulfur adduct 9a , in which an S atom (electron sextet) was bound to the lone pair of electrons at phosphorus and to the Lewis acidic Ga atom. Four‐membered PCGaY heterocycles resulted, which were also synthesized in high yields by the direct reaction of 1 with propylene sulfide or selenium.  相似文献   

7.
Lanthanum, neodymium, and samariumtert-butoxycuprates [(ButO)5Cu2Ln]2 were synthesized in high yields by reactions of ButOCu with lanthanide metals, the halides Sml2 and LnX3 (Ln=La, Nd: X=Cl, 1) and by the reaction of ButOLi with a mixture of LnCl3 and CuCl. X-Ray diffraction analysis showed that the structure of [(ButO)5Cu2Sm]2 is based on octahedra formed by four copper atoms in equatorial positions and two samarium atoms in axoal positions; the copper and samarium atoms are linked by μ3-bridging ButO groups. The reactions of lanthanumtert-butoxycuprate with H2O, HCl, CpH, PhC≡CH, and CO2 were studied.  相似文献   

8.
The Crystal Structure of tBu2P? P?P(Br)tBu2 tBu2P? P?P(Br)tBu2 1 crystallizes in the monoclinic space group P21/c with a = 2 888.9(3), b = 972.16(10), c = 1 534.04(14) pm, β = 105.129(8)° and 8 formula units in the unit cell. The two independent P3-units in 1 form angles of 105.77° or 105.98°, resp. One P? P distance (220,4 pm) corresponds to a single bond, the other one (207.9 pm) to a double bond.  相似文献   

9.
Hydrogallation of Me3Si–C≡C–NR'2 with R2Ga–H (R = tBu, CH2tBu, iBu) yielded Ga/N‐based active Lewis pairs, R2Ga–C(SiMe3)=C(H)–NR'2 ( 7 ). The Ga and N atoms adopt cis‐positions at the C=C bonds and show weak Ga–N interactions. tBu2GaH and Me3Si–C≡C–N(C2H4)2NMe afforded under exposure of daylight the trifunctional digallium(II) compound [MeN(C2H4)2N](H)C=C(SiMe3)Ga(tBu)–Ga(tBu)C(SiMe3)=C(H)[N(C2H4)2NMe] ( 8 ), which results from elimination of isobutene and H2 and Ga–Ga bond formation. 8 was selectively obtained from the ynamine and [tBu(H)Ga–Ga(H)tBu]2[HGatBu2]2. 7a (R = tBu; NR'2 = 2,6‐Me2NC5H8) and H8C4N–C≡N afforded the adduct tBu2Ga‐C(SiMe3)=C(H)(2,6‐Me2NC5H8) · N≡C–NC4H8 ( 11 ) with the nitrile bound to gallium. The analogous ALP with harder Al atoms yielded an adduct of the nitrile dimer or oligomers of the nitrile at room temperature. The reaction of 7a with Ph–N=C=O led to the insertion of two NCO groups into the Ga–Cvinyl bond to yield a GaOCNCN heterocycle with Ga bound to O and N atoms ( 12 ).  相似文献   

10.
Herein, we present the formation of transient radical ion pairs (RIPs) by single-electron transfer (SET) in phosphine−quinone systems and explore their potential for the activation of C−H bonds. PMes3 (Mes=2,4,6-Me3C6H2) reacts with DDQ (2,3-dichloro-5,6-dicyano-1,4-benzoquinone) with formation of the P−O bonded zwitterionic adduct Mes3P−DDQ ( 1 ), while the reaction with the sterically more crowded PTip3 (Tip=2,4,6-iPr3C6H2) afforded C−H bond activation product Tip2P(H)(2-[CMe2(DDQ)]-4,6-iPr2-C6H2) ( 2 ). UV/Vis and EPR spectroscopic studies showed that the latter reaction proceeds via initial SET, forming RIP [PTip3]⋅+[DDQ]⋅, and subsequent homolytic C−H bond activation, which was supported by DFT calculations. The isolation of analogous products, Tip2P(H)(2-[CMe2{TCQ−B(C6F5)3}]-4,6-iPr2-C6H2) ( 4 , TCQ=tetrachloro-1,4-benzoquinone) and Tip2P(H)(2-[CMe2{oQtBu−B(C6F5)3}]-4,6-iPr2-C6H2) ( 8 , oQtBu=3,5-di-tert-butyl-1,2-benzoquinone), from reactions of PTip3 with Lewis-acid activated quinones, TCQ−B(C6F5)3 and oQtBu−B(C6F5)3, respectively, further supports the proposed radical mechanism. As such, this study presents key mechanistic insights into the homolytic C−H bond activation by the synergistic action of radical ion pairs.  相似文献   

11.
N-heterocyclic nitrogen Lewis acids are a recent addition to the field of organic chemistry. Based on nitrenium cations, these acids where previously shown to generate Lewis adducts when combined with the appropriate Lewis bases. Herein, a triazinium-based Lewis acid was combined with tBu3P to generate a frustrated Lewis pair (FLP) capable of cleaving, for the first time, Si−H bonds in silanes. Whereas low yields were initially encountered owing to insufficient Lewis acidity, a new nitrenium-based Lewis acid was synthesized, and its superior Lewis acidity was experimentally and computationally confirmed. A FLP based on this acid cleaved the Si−H bond in PhSiH3, generating the triazane product in a quantitative yield. This unprecedented N−H triazane was fully characterized by multinuclear NMR techniques and single-crystal X-ray crystallography. A new class of compounds, N-H triazanes display the potential capacity to participate in hydride transfer reactions.  相似文献   

12.
The reaction of dimethylzinc and tri(tert‐butyl)silylphosphane in toluene yielded dimeric methylzinc tri(tert‐butyl)silylphosphanide ( 1 ) which crystallized tetrameric. Compound 1 was deprotonated with sodium in DME and the solvent‐separated dimeric ion pair [(dme)3Na]+ [(dme)Na(MeZn)2(μ‐PSitBu3)2]? ( 2 ) was isolated. The reaction of 1 in THF with two equivalents of potassium and one equivalent of tri(tert‐butyl)silylphosphane gave dimeric [{tBu3Si(H)P}{(thf)2K}2(MeZn)(PSitBu3)]2 ( 3 ). Both of these phosphanylzincates contain Zn2P2 cycles with Zn‐P bond lengths of approximately 237 pm, whereas in 1 larger Zn‐P bond lengths of 248.5 pm were found due to the larger coordination numbers of the phosphorus and zinc atoms.  相似文献   

13.
Borane adducts of bis(di-tert-butylphosphanyl)amine ( 1a ) and bis(di-tert-butylarsino)amine ( 1b ) are reported. Based on quantum-chemical investigations in combination with experimental results, it is demonstrated that the tautomerism known for tBu2P-N(H)-PtBu2 ( 1a ), can be observed for the mono adduct tBu2P-N(H)-P(BH3)tBu2 ( 2a ) as well, whereas for the corresponding arsenic compound 2b only one stable isomer is found. The bis-borane adduct tBu2(BH3)As-N(H)-As(BH3)tBu2 ( 3b ) is a rare example of a structurally characterized, tertiary arsine borane adduct, which can be directly compared with the corresponding phosphorus compound tBu2(BH3)P-N(H)-P(BH3)tBu2 ( 3a ). Deprotonation of mixtures containing 2a by nBuLi leads to the lithium-containing coordination polymer 4a , in which the actual chain consists only of non-carbon atoms.  相似文献   

14.
Three Lewis acid–base adducts t‐Bu3Ga–EPh3 (E = P 1 , As 2 , Sb 3 ) were synthesized by reactions of Ph3E and t‐Bu3Ga and characterized by heteronuclear NMR (1H, 13C (31P)) and IR spectroscopy, elemental analysis and single crystal X‐ray diffraction. Their structural parameters are discussed and compared to similar t‐Bu3Ga adducts. The strength of the donor‐acceptor interactions within 1 – 3 was investigated in solution by temperature‐dependent 1H NMR spectroscopy and by quantum chemical calculations.  相似文献   

15.
Here we report the use of a base metal complex [(tBupyrpyrr2)Fe(OEt2)] ( 1 -OEt2) (tBupyrpyrr22−=3,5-tBu2-bis(pyrrolyl)pyridine) as a catalyst for intermolecular amination of Csp3−H bonds of 9,10-dihydroanthracene ( 2 a ) using 2,4,6-trimethyl phenyl azide ( 3 a ) as the nitrene source. The reaction is complete within one hour at 80 °C using as low as 2 mol % 1 -OEt2 with control in selectivity for single C−H amination versus double C−H amination. Catalytic C−H amination reactions can be extended to other substrates such as cyclohexadiene and xanthene derivatives and can tolerate a variety of aryl azides having methyl groups in both ortho positions. Under stoichiometric conditions the imido radical species [(tBupyrpyrr2)Fe{=N(2,6-Me2-4-tBu-C6H2)] ( 1 -imido) can be isolated in 56 % yield, and spectroscopic, magnetometric, and computational studies confirmed it to be an S = 1 FeIV complex. Complex 1 -imido reacts with 2 a to produce the ferrous aniline adduct [(tBupyrpyrr2)Fe{NH(2,6-Me2-4-tBu-C6H2)(C14H11)}] ( 1 -aniline) in 45 % yield. Lastly, it was found that complexes 1 -imido and 1 -aniline are both competent intermediates in catalytic intermolecular C−H amination.  相似文献   

16.
tBu2P? P?P(X)tBu2 Ylides (X = Cl, Br, I) by Halogenation of [tBu2P]2P? SiMe3 [tBu2P]2P? SiMe3 1 with halogenating agents as Br2, I2, Br-succinimide, CCl4, CBr4, CI4 or C2Cl6 via cleavage of the Si? P bond in 1 produces the ylides tBu2P? P?P(X)tBu2 (X = Cl, Br, I). This proceeds independent from the formerly known pathway – [tBu2P]2PLi + 1,2-dibromoethane – and shows that the Li-phosphide must not be present as a necessary requirement for the formation of ylides.  相似文献   

17.
UV irradiation of solutions of a guanidinate coordinated dimagnesium(I) compound, [{(Priso)Mg}2] 3 (Priso=[(DipN)2CNPri2], Dip=2,6-diisopropylphenyl), in either benzene, toluene, the three isomers of xylene, or mesitylene, leads to facile activation of an aromatic C−H bond of the solvent in all cases, and formation of aryl/hydride bridged magnesium(II) products, [{(Priso)Mg}2(μ-H)(μ-Ar)] 4 – 9 . In contrast to similar reactions reported for β-diketiminate coordinated counterparts of 3 , these C−H activations proceed with little regioselectivity, though they are considerably faster. Reaction of 3 with an excess of the pyridine, p-NC5H4But (pyBut), gave [(Priso)Mg(pyButH)(pyBut)2] 10 , presumably via reduction of the pyridine to yield a radical intermediate, [(Priso)Mg(pyBut⋅)(pyBut)2] 11 , which then abstracts a proton from the reaction solvent or a reactant. DFT calculations suggest two possible pathways to the observed arene C−H activations. One of these involves photochemical cleavage of the Mg−Mg bond of 3 , generating magnesium(I) doublet radicals, (Priso)Mg⋅. These then doubly reduce the arene substrate to give “Birch-like” products, which subsequently rearrange via C−H activation of the arene. Circumstantial evidence for the photochemical generation of transient magnesium radical species includes the fact that irradiation of a cyclohexane solution of 3 leads to an intramolecular aliphatic C−H activation process and formation of an alkyl-bridged magnesium(II) species, [{Mg(μ-Priso−H)}2] 12 . Furthermore, irradiation of a 1 : 1 mixture of 3 and the β-diketiminato dimagnesium(I) compound, [{(DipNacnac)Mg}2] (DipNacnac=[HC(MeCNDip)2]), effects a “scrambling” reaction, and the near quantitative formation of an unsymmetrical dimagnesium(I) compound, [(Priso)Mg−Mg(DipNacnac)] 13 . Finally, the EPR spectrum (77 K) of a glassed solution of UV irradiated 3 is dominated by a broad featureless signal, indicating the presence of a doublet radical species.  相似文献   

18.
Syntheses and Crystal Structures of tBu‐substituted Disiloxanes tBu2SiX‐O‐SiYtBu2 (X = Y = OH, Br; X = OH, Y = H) and of the Adducts tBu3SiOH·(HO3SCF3)0.5·H2O and tBu3SiOLi·(LiO3SCF3)2·(H2O)2 The disiloxanes tBu2SiX‐O‐SiYtBu2 (X = Y = H, OH) are accessible from the reaction of CF3SO2Cl with tBu2SiHOH or tBu2Si(OH)2. By this reaction the disiloxane tBu2SiH‐O‐SiHtBu2 is formed together with tBu2SiH‐O‐SiOHtBu2. The disiloxanes tBu2SiX‐O‐SiYtBu2 (X = Y = Cl, Br) can be synthesized almost quantitatively from tBu2SiH‐O‐SiHtBu2 with Cl2 and Br2 in CH2Cl2. The structures of the disiloxanes tBu2SiX‐O‐SiYtBu2 (X = H, Y = OH; X = Y = OH, Br) show almost linear Si‐O‐Si units with short Si‐O bonds. Single crystals of the adducts tBu3SiOH·(HO3SCF3)0.5·H2O and tBu3SiOLi·(LiO3SCF3)2·(H2O)2 have been obtained from the reaction of tBu3SiOH with CF3SO3H and of tBu3SiO3SCF3 with LiOH. According to the result of the X‐ray structural analysis (hexagonal, P‐62c), tBu3SiOLi · (LiO3SCF3)2·(H2O)2 features the ion pair [(tBu3SiOLi)2(LiO3SCF3)3(H2O)3Li]+ [CF3SO3]?. The central framework of the cation forms a trigonal Li6 prism.  相似文献   

19.
The geminal frustrated Lewis pair tBu2PCH2B(Fxyl)2 ( 1 ; Fxyl=3,5‐(CF3)2C6H3) is accessible in 65 % yield from tBu2PCH2Li and (Fxyl)2BF. According to NMR spectroscopy and X‐ray crystallography, 1 is monomeric both in solution and in the solid state. The intramolecular P ??? B distance of 2.900(5) Å and the full planarity of the borane site exclude any significant P/B interaction. Compound 1 readily activates a broad variety of substrates including H2, EtMe2SiH, CO2/CS2, Ph2CO, and H3CCN. Terminal alkynes react with heterolysis of the C?H bond. Haloboranes give cyclic adducts with strong P?BX3 and weak R3B?X bonds. Unprecedented transformations leading to zwitterionic XP/BCX3 adducts occur on treatment of 1 with CCl4 or CBr4 in Et2O. In less polar solvents (C6H6, n‐pentane), XP/BCX3 adduct formation is accompanied by the generation of significant amounts of XP/BX adducts. FLP 1 catalyzes the hydrogenation of PhCH=NtBu and the hydrosilylation of Ph2CO with EtMe2SiH.  相似文献   

20.
The silylenes Si(tBu2bzam)R (tBu2bzam=N,N′-bis(tertbutyl)benzamidinate; R=mesityl, CH2SiMe3) attack the Ccarbene atom of the Fischer alkynyl(ethoxy)carbene complex [W(CO)5{C(OEt)C2Ph}] to give, after a striking rearrangement, zwitterionic σ-allenyl complexes in which the original carbene C atom forms part of the allene C3 fragment and also of a Si-C-N-C-N five-membered ring after insertion into a Si−N bond of the original amidinatosilylene. These remarkable allenyl products, which contain two stereogenic groups, are selectively formed as single diastereomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号