首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
除了作为遗传信息的载体,DNA所展现出的特殊材料性能引起了广泛关注。基于碱基互补配对原则的精确性和可编程性使得核酸纳米结构的构建逐步从一维单链发展到二维平面以及三维立体结构。计算机辅助工具的进步也促进了各种大小和形状的DNA纳米结构的自动化设计,而近年来构建的"框架核酸(FNAs)"为生物大分子纳米尺度上的精确排列提供了新方法,其固有的生物学功能以及可定制的特性使得其在物理、化学和生物等领域具有十分广阔的应用前景。本文阐述了精确自组装的FNAs的概念,并概述了FNAs在蛋白精确组装等领域的最新进展;重点论述了FNAs的优势所带来的对蛋白空间排布及其性能的调控能力,讨论了该领域存在的挑战,并对其发展机遇进行了展望。  相似文献   

2.
Wenhao Li  Yanmei Li 《大学化学》1986,35(12):29-34
The COVID-19 pandemic caused significant losses to the global community. The pathogen, called SARSCoV-2, showed high infection rate and certain case-fatality rate, which bring great challenges to treatments. Vaccination is the major way for epidemic prevention which attracts several developers to conduct COVID-19 vaccine studies. This paper presents the design principle of a COVID-19 vaccine and summarizes the latest research progress on vaccine development. The authors hope to provide insights for understanding vaccine study of COVID-19.  相似文献   

3.
Ionisable amino-lipid is a key component in lipid nanoparticles (LNPs), which plays a crucial role in the encapsulation of RNA molecules, allowing efficient cellular uptake and then releasing RNA from acidic endosomes. Herein, we present direct evidence for the remarkable structural transitions, with decreasing membrane curvature, including from inverse micellar, to inverse hexagonal, to two distinct inverse bicontinuous cubic, and finally to a lamellar phase for the two mainstream COVID-19 vaccine ionisable ALC-0315 and SM-102 lipids, occurring upon gradual acidification as encountered in endosomes. The millisecond kinetic growth of the inverse cubic and hexagonal structures and the evolution of the ordered structural formation upon ionisable lipid-RNA/DNA complexation are quantitatively revealed by in situ synchrotron radiation time-resolved small angle X-ray scattering coupled with rapid flow mixing. We found that the final self-assembled structural identity, and the formation kinetics, were controlled by the ionisable lipid molecular structure, acidic bulk environment, lipid compositions, and nucleic acid molecular structure/size. The implicated link between the inverse membrane curvature of LNP and LNP endosomal escape helps future optimisation of ionisable lipids and LNP engineering for RNA and gene delivery.  相似文献   

4.
AnewtypeofDNAmimictermedPNA(PeptideNtlcleicAcid).wasfirstpreparedbyNielsenela/'intileearly1990s.ItisanoligonucleotideanalogueinwhichtheentiredeoxyribosephosphatebackbonehasbeenreplacedbyachemicallycompletelydilTerent.butstructurallyhomomorphousachira...  相似文献   

5.
分别以保护的L-和D-赖氨酸作为起始原料合成了两种类型的PNA单体。在类型I中,碱基通过-CH2C(O)-间隔臂与赖氨酸的α-NH相连,而类型Ⅱ中,-C(O)-用作连接臂。  相似文献   

6.
In the last two years, the coronavirus disease 19 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a scientific and social challenge worldwide. Vaccines have been the most effective intervention for reducing virus transmission and disease severity. However, genetic virus variants are still circulating among vaccinated individuals with different disease symptomatology. Understanding the protective- or disease-associated mechanisms in vaccinated individuals is relevant to advances in vaccine development and implementation. To address this objective, serum-protein profiles were characterized by quantitative proteomics and data-analysis algorithms in four cohorts of uninfected and SARS-CoV-2-infected vaccinated individuals with asymptomatic, non-severe, and severe disease symptomatology. The results show that immunoglobulins were the most overrepresented proteins in infected cohorts when compared to PCR-negative individuals. The immunoglobulin profile varied between different infected cohorts and correlated with protective- or disease-associated capacity. Overrepresented immunoglobulins in PCR-positive individuals correlated with protective response against SARS-CoV-2, other viruses, and thrombosis in asymptomatic cases. In non-severe cases, correlates of protection against SARS-CoV-2 and HBV together with risk of myasthenia gravis and allergy and autoantibodies were observed. Patients with severe symptoms presented risk for allergy, chronic idiopathic thrombocytopenic purpura, and autoantibodies. The analysis of underrepresented immunoglobulins in PCR-positive compared to PCR-negative individuals identified vaccine-induced protective epitopes in various coronavirus proteins, including the spike receptor-binding domain RBD. Non-immunoglobulin proteins were associated with COVID-19 symptoms and biological processes. These results evidence host-associated differences in response to vaccination and the possibility of improving vaccine efficacy against SARS-CoV-2.  相似文献   

7.
Ribavirin is a synthetic, broad-spectrum antiviral drug. Ribavirin is recommended as an antiviral drug in the Interim Guidance for Diagnosis and Treatment (the seventh edition) of COVID-19. The ribavirin levels in red blood cells may be closely related to both its efficacy and adverse drug reactions. In this study, a simple and fast HPLC–UV method was established to determine the concentrations of total ribavirin in the red blood cells of 13 patients with COVID-19. Phosphorylated ribavirin was dephosphorylated by phosphatase incubation to obtain the total amount of ribavirin in red blood cells. The chromatographic column was an Atlantis C18. The recoveries were 85.45–89.05% at three levels. A good linear response was from 1 to 200 μg/ml, with a correlation coefficient of r2 = 0.9991. The concentration of total ribavirin in the red blood cells of the patients ranged from 30.83 to 133.34 μg/ml. The same samples without phosphatase incubation ranged from 4.07 to 20.84 μg/ml. About 85% of ribavirin was phosphorylated in red blood cells. In addition, we observed changes in these patients' hematological parameters and found that the erythrocyte, hemoglobin and hematocrit declined to the lowest levels on the fifth day after discontinuation of ribavirin (p < 0.05).  相似文献   

8.
The rapid and reliable detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroconversion in humans is crucial for suitable infection control. In this sense, many studies have focused on increasing the sensibility, lowering the detection limits and minimizing false negative/positive results. Thus, biosensors based on nanoarchitectures of conducting polymers are promising alternatives to more traditional materials since they can hold improved surface area, higher electrical conductivity and electrochemical activity. In this work, we reported the analytical comparison of two different conducting polymers morphologies for the development of an impedimetric biosensor to monitor SARS-CoV-2 seroconversion in humans. Biosensors based on polypyrrole (PPy), synthesized in both globular and nanotubular (NT) morphology, and gold nanoparticles are reported, using a self-assembly monolayer of 3-mercaptopropionic acid and covalently linked SARS-CoV-2 Nucleocapsid protein. First, the novel hybrid materials were characterized by electron microscopy and electrochemical measurements, and the biosensor step-by-step construction was characterized by electrochemical and spectroscopic techniques. As a proof of concept, the biosensor was used for the impedimetric detection of anti-SARS-CoV-2 Nucleocapsid protein monoclonal antibodies. The results showed a linear response for different antibody concentrations, good sensibility and possibility to quantify 7.442 and 0.4 ng/mL of monoclonal antibody for PPy in the globular and NT morphology, respectively. The PPy-NTs biosensor was able to discriminate serum obtained from COVID-19 positive versus negative clinical samples and is a promising tool for COVID-19 immunodiagnostic, which can contribute to further studies concerning rapid, efficient, and reliable detections.  相似文献   

9.
Cepharanthine (CEP) has excellent anti-SARS-CoV-2 properties, indicating its favorable potential for COVID-19 treatment. However, its application is challenged by its poor dissolubility and oral bioavailability. The present study aimed to improve the bioavailability of CEP by optimizing its solubility and through a pulmonary delivery method, which improved its bioavailability by five times when compared to that through the oral delivery method (68.07% vs. 13.15%). An ultra-performance liquid chromatography tandem-mass spectrometry (UPLC-MS/MS) method for quantification of CEP in rat plasma was developed and validated to support the bioavailability and pharmacokinetic studies. In addition, pulmonary fibrosis was recognized as a sequela of COVID-19 infection, warranting further evaluation of the therapeutic potential of CEP on a rat lung fibrosis model. The antifibrotic effect was assessed by analysis of lung index and histopathological examination, detection of transforming growth factor (TGF)-β1, interleukin-6 (IL-6), α-smooth muscle actin (α-SMA), and hydroxyproline level in serum or lung tissues. Our data demonstrated that CEP could significantly alleviate bleomycin (BLM)-induced collagen accumulation and inflammation, thereby exerting protective effects against pulmonary fibrosis. Our results provide evidence supporting the hypothesis that pulmonary delivery CEP may be a promising therapy for pulmonary fibrosis associated with COVID-19 infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号