共查询到20条相似文献,搜索用时 0 毫秒
1.
Dr. Jing Li Kaiyue Ji Boyang Li Prof. Ming Xu Ye Wang Prof. Hua Zhou Qiujin Shi Prof. Haohong Duan 《Angewandte Chemie (International ed. in English)》2023,62(31):e202304852
The development of a rechargeable battery that can produce valuable chemicals in both electricity storage and generation processes holds great promise for increasing the electron economy and economic value. However, this battery has yet to be explored. Herein, we report a biomass flow battery that generates electricity while producing furoic acid, and store electricity while yielding furfuryl alcohol. The battery is composed of a rhodium-copper (Rh1Cu) single-atom alloy as anode, a cobalt-doped nickel hydroxide (Co0.2Ni0.8(OH)2) as cathode, and furfural-containing anolyte. In a full battery evaluation, this battery displays an open circuit voltage (OCV) of 1.29 V and a peak power density up to 107 mW cm−2, surpassing most catalysis-battery hybrid systems. As a proof-of-concept, we demonstrate that this battery produces 1 kg furoic acid with 0.78 kWh electricity output, and yields 0.62 kg furfuryl alcohol when 1 kWh electricity is stored. This work may shed light on the design of rechargeable batteries with value-added functionality such as chemicals production. 相似文献
2.
Dr. Yang Yu Jintao Wang Zhaoxian Qin Yingtong Lv Qijun Pei Khai Chen Tan Prof. Tengfei Zhang Dr. Anan Wu Prof. Teng He Dr. Hui Wu Dr. Andrew S. Lipton Prof. Ping Chen 《Angewandte Chemie (International ed. in English)》2023,62(26):e202302679
Replacing widely used organic liquid electrolytes with solid-state electrolytes (SSEs) could effectively solve the safety issues in sodium-ion batteries. Efforts on seeking novel solid-state electrolytes have been continued for decades. However, issues about SSEs still exist, such as low ionic conductivity at ambient temperature, difficulty in manufacturing, low electrochemical stability, poor compatibility with electrodes, etc. Here, sodium carbazolide (Na-CZ) and its THF-coordinated derivatives are rationally fabricated as Na+ conductors, and two of their crystal structures are successfully solved. Among these materials, THF-coordinated complexes exhibit fast Na+ conductivities, i.e., 1.20×10−4 S cm−1 and 1.95×10−3 S cm−1 at 90 °C for Na-CZ-1THF and Na-CZ-2THF, respectively, which are among the top Na+ conductors under the same condition. Furthermore, stable Na plating/stripping is observed even over 400 h cycling, showing outstanding interfacial stability and compatibility against Na electrode. More advantages such as ease of synthesis, low-cost, and cold pressing for molding can be obtained. In situ NMR results revealed that the evaporation of THF may play an essential role in the Na+ migration, where the movement of THF creates defects/vacancies and facilitates the migration of Na+. 相似文献
3.
Xueqing Min Changxing Han Shenghang Zhang Jun Ma Naifang Hu Jiedong Li Xiaofan Du Bin Xie Hong-Ji Lin Chang-Yang Kuo Chien-Te Chen Prof. Zhiwei Hu Lixin Qiao Zili Cui Gaojie Xu Prof. Guanglei Cui 《Angewandte Chemie (International ed. in English)》2023,62(34):e202302664
Lithium difluoro(oxalato) borate (LiDFOB) has been widely investigated in lithium-ion batteries (LIBs) owing to its advantageous thermal stability and excellent aluminum passivation property. However, LiDFOB tends to suffer from severe decomposition and generate a lot of gas species (e.g., CO2). Herein, a novel cyano-functionalized lithium borate salt, namely lithium difluoro(1,2-dihydroxyethane-1,1,2,2-tetracarbonitrile) borate (LiDFTCB), is innovatively synthesized as a highly oxidative-resistant salt to alleviate above dilemma. It is revealed that the LiDFTCB-based electrolyte enables LiCoO2/graphite cells with superior capacity retention at both room and elevated temperatures (e.g., 80 % after 600 cycles) with barely any CO2 gas evolution. Systematic studies reveal that LiDFTCB tends to form thin and robust interfacial layers at both electrodes. This work emphasizes the crucial role of cyano-functionalized anions in improving cycle lifespan and safety of practical LIBs. 相似文献
4.
黄俊达 朱宇辉 冯煜 韩叶虎 谷振一 刘日鑫 杨冬月 陈凯 张相禹 孙威 辛森 余彦 尉海军 张旭 于乐 王华 刘新华 付永柱 李国杰 吴兴隆 马灿良 王飞 陈龙 周光敏 吴思思 卢周广 李秀婷 刘继磊 高鹏 梁宵 常智 叶华林 李彦光 周亮 尤雅 王鹏飞 杨超 刘金平 孙美玲 毛明磊 陈浩 张山青 黄岗 余丁山 徐建铁 熊胜林 张进涛 王莹 任玉荣 杨春鹏 徐韵涵 陈亚楠 许运华 陈子峰 杲祥文 浦圣达 郭少华 李强 曹晓雨 明军 皮欣朋 梁超凡 伽龙 王俊雄 焦淑红 姚雨 晏成林 周栋 李宝华 彭新文 陈冲 唐永炳 张桥保 刘奇 任金粲 贺艳兵 郝晓鸽 郗凯 陈立宝 马建民 《物理化学学报》2022,38(12):2208008
能源的存储和利用是当今科学和技术发展中的重大课题之一,尤其是作为高效的电能/化学能转化装置的二次电池相关技术一直是科学家研究的热点领域。在此背景下,本文较为系统地介绍目前二次电池的重要研究进展,将从二次电池的发展历史引入,再到其相关的基础理论知识的介绍。随后较为详细地讨论当前不同体系的二次电池及相关应的关键材料的研究进展,涉及到锂离子电池、钠离子电池、钾离子电池、镁离子电池、锌离子电池、钙离子电池、铝离子电池、氟离子电池、氯离子电池、双离子电池、锂-硫(硒)电池、钠-硫(硒)电池、钾-硫(硒)电池、多价金属-硫基电池、锂-氧电池、钠-氧电池、钾-氧电池、多价金属-氧气电池、锂-溴(碘)电池、水系金属离子电池、光辅助电池、柔性电池、有机电池、金属-二氧化碳电池等。此外,也介绍了电池研究中常见的电极反应过程表征技术,包括冷冻电镜、透射电镜、同步辐射、原位谱学表征、磁性表征等。本文将有助于研究人员对二次电池进行全面系统的了解与把握,并为之后二次电池的研究提供很好的指导作用。 相似文献
5.
Yibo Wang Pengyu Meng Zhaohui Yang Dr. Min Jiang Dr. Jian Yang Dr. Huanxin Li Prof. Jiao Zhang Prof. Baode Sun Prof. Chaopeng Fu 《Angewandte Chemie (International ed. in English)》2023,62(28):e202304229
Highly-active and low-cost bifunctional electrocatalysts for oxygen reduction and evolution are essential in rechargeable metal-air batteries, and single atom catalysts with Fe−N−C are promising candidates. However, the activity still needs to be boosted, and the origination of spin-related oxygen catalytic performance is still uncertain. Herein, an effective strategy to regulate local spin state of Fe−N−C through manipulating crystal field and magnetic field is proposed. The spin state of atomic Fe can be regulated from low spin to intermediate spin and to high spin. The cavitation of dxz and dyz orbitals of high spin FeIII can optimize the O2 adsorption and promote the rate-determining step (*O2 to *OOH). Benefiting from these merits, the high spin Fe−N−C electrocatalyst displays the highest oxygen electrocatalytic activities. Furthermore, the high spin Fe−N−C-based rechargeable zinc-air battery displays a high power density of 170 mW cm−2 and good stability. 相似文献
6.
Wenlu Sun Congjia Zhou Yingzhu Fan Yulu He Dr. Hui Zhang Prof. Zhilong Quan Dr. Huabin Kong Prof. Fang Fu Prof. Jiaqian Qin Prof. Yanbin Shen Prof. Hongwei Chen 《Angewandte Chemie (International ed. in English)》2023,62(13):e202300158
Fast and continuous ion insertion is blocked in the common electrodes operating with widely accepted single-ion storage mechanism, primarily due to Coulomb repulsion between the same ions. It results in an irreconcilable conflict between capacity and rate performance. Herein, we designed a porous organic framework with novel multiple-ion co-storage modes, including PF6−/Li+, OTF−/Mg2+, and OTF−/Zn2+ co-storage. The Coulomb interactions between cationic and anionic carriers in the framework can significantly promote electrode kinetics, by rejuvenating fast ion carrier migration toward framework interior. Consequently, the framework via PF6−/Li+ co-storage mode shows a high energy density of 878 Wh kg−1 cycled more than 20 000 cycles, with an excellent power density of 28 kW kg−1 that is already comparable to commercial supercapacitors. The both greatly improved energy and power densities via the co-storage mode may pave a way for exploring new electrodes that are not available from common single-ion electrodes. 相似文献
7.
Searching for new cheap encapsulating materials to decrease the solubility of organic small molecules as the cathode materials in electrolytes and improve the performance of organic lithium‐ion batteries (LIBs) is very important and highly desirable. In this research, we found that a novel cheap biomass carbon (named as PPL), prepared by pyrolyzing calyxes of Physalis Peruviana L, can efficiently encapsulate calix[4]quinone to form composites, which can be used as cathodes in LIBs. The initial discharge capacity of the as‐fabricated battery was 437 mAh g?1 and could maintain 228 mAh g?1 after 100 cycles. Even at 1 C, the discharge capacity was still 217 mAh g?1. 相似文献
8.
Bareera Raza Yu Zhang Jiahang Chen Umair Shamraiz Yang Zhang Ahmad Naveed Prof. Jiulin Wang 《Angewandte Chemie (International ed. in English)》2023,62(27):e202302174
Rechargeable Zinc batteries (RZBs) are considered a potent competitor for next-generation electrochemical devices, due to their multiple advantages. Nevertheless, traditional aqueous electrolytes may cause serious hazards to long-term battery cycling through fast capacity fading and poor Coulombic efficiency (CE), which happens due to complex reaction kinetics in aqueous systems. Herein, we proposed the novel adoption of the protic amide solvent, N-methyl formamide (NMF) as a Zinc battery electrolyte, which possesses a high dielectric constant and high flash point to promote fast kinetics and battery safety simultaneously. Dendrite-free and granular Zn deposition in Zn-NMF electrolyte assures ultra-long lifespan of 2000 h at 2.0 mA cm−2/2.0 mAh cm−2, high CE of 99.57 %, wide electrochemical window (≈3.43 V vs. Zn2+/Zn), and outstanding durability up to 10.0 mAh cm−2. This work sheds light on the efficient performance of the protic non-aqueous electrolyte, which will open new opportunities to promote safe and energy-dense RZBs. 相似文献
9.
Prof. Xuerong Zheng Yanhui Cao Dr. Haozhi Wang Dr. Jinfeng Zhang Menghan Zhao Dr. Zhong Huang Dr. Yang Wang Dr. Li Zhang Prof. Yida Deng Prof. Wenbin Hu Prof. Xiaopeng Han 《Angewandte Chemie (International ed. in English)》2023,62(24):e202302689
The sluggish kinetics and mutual interference of oxygen evolution and reduction reactions in the air electrode resulted in large charge/discharge overpotential and low energy efficiency of Zn-air batteries. In this work, we designed a breathing air-electrode configuration in the battery using P-type Ca3Co4O9 and N-type CaMnO3 as charge and discharge thermoelectrocatalysts, respectively. The Seebeck voltages generated from thermoelectric effect of Ca3Co4O9 and CaMnO3 synergistically compensated the charge and discharge overpotentials. The carrier migration and accumulation on the cold surface of Ca3Co4O9 and CaMnO3 optimized the electronic structure of metallic sites and thus enhanced their intrinsic catalytic activity. The oxygen evolution and reduction overpotentials were enhanced by 101 and 90 mV, respectively, at temperature gradient of 200 °C. The breathing Zn-air battery displayed a remarkable energy efficiency of 68.1 %. This work provides an efficient avenue towards utilizing waste heat for improving the energy efficiency of Zn-air battery. 相似文献
10.
Dr. Junnan Hao Libei Yuan Yilong Zhu Dr. Xiaowan Bai Dr. Chao Ye Prof. Yan Jiao Prof. Shi-Zhang Qiao 《Angewandte Chemie (International ed. in English)》2023,62(39):e202310284
As a burgeoning electrolyte system, eutectic electrolytes based on ZnCl2/Zn(CF3SO3)2/Zn(TFSI)2 have been widely proposed in advanced Zn-I2 batteries; however, safety and cost concerns significantly limit their applications. Here, we report new-type ZnSO4-based eutectic electrolytes that are both safe and cost-effective. Their universality is evident in various solvents of polyhydric alcohols, in which multiple −OH groups not only involve in Zn2+ solvation but also interact with water, resulting in the high stability of electrolytes. Taking propylene glycol-based hydrated eutectic electrolyte as an example, it features significant advantages in non-flammability and low price that is <1/200 cost of Zn(CF3SO3)2/Zn(TFSI)2-based eutectic electrolytes. Moreover, its effectiveness in confining the shuttle effects of I2 cathode and side reactions of Zn anodes is evidenced, resulting in Zn-I2 cells with high reversibility at 1 C and 91.4 % capacity remaining under 20 C. After scaling up to the pouch cell with a record mass loading of 33.3 mg cm−2, super-high-capacity retention of 96.7 % is achieved after 500 cycles, which exceeds other aqueous counterparts. This work significantly broadens the eutectic electrolyte family for advanced Zn battery design. 相似文献
11.
Yanlei Xiu Anna Mauri Dr. Sirshendu Dinda Dr. Yohanes Pramudya Ziming Ding Dr. Thomas Diemant Dr. Abhishek Sarkar Dr. Liping Wang Dr. Zhenyou Li Prof. Dr. Wolfgang Wenzel Prof. Dr. Maximilian Fichtner Dr. Zhirong Zhao-Karger 《Angewandte Chemie (International ed. in English)》2023,62(2):e202212339
Multivalent batteries show promising prospects for next-generation sustainable energy storage applications. Herein, we report a polytriphenylamine (PTPAn) composite cathode capable of highly reversible storage of tetrakis(hexafluoroisopropyloxy) borate [B(hfip)4] anions in both Magnesium (Mg) and calcium (Ca) battery systems. Spectroscopic and computational studies reveal the redox reaction mechanism of the PTPAn cathode material. The Mg and Ca cells exhibit a cell voltage >3 V, a high-power density of ∼∼3000 W kg−1 and a high-energy density of ∼∼300 Wh kg−1, respectively. Moreover, the combination of the PTPAn cathode with a calcium-tin (Ca−Sn) alloy anode could enable a long battery-life of 3000 cycles with a capacity retention of 60 %. The anion storage chemistry associated with dual-ion electrochemical concept demonstrates a new feasible pathway towards high-performance divalent ion batteries. 相似文献
12.
Nao Yao Legeng Yu Dr. Zhong-Heng Fu Dr. Xin Shen Dr. Ting-Zheng Hou Dr. Xinyan Liu Yu-Chen Gao Dr. Rui Zhang Dr. Chen-Zi Zhao Dr. Xiang Chen Prof. Qiang Zhang 《Angewandte Chemie (International ed. in English)》2023,62(41):e202305331
Viscosity is an extremely important property for ion transport and wettability of electrolytes. Easy access to viscosity values and a deep understanding of this property remain challenging yet critical to evaluating the electrolyte performance and tailoring electrolyte recipes with targeted properties. We proposed a screened overlapping method to efficiently compute the viscosity of lithium battery electrolytes by molecular dynamics simulations. The origin of electrolyte viscosity was further comprehensively probed. The viscosity of solvents exhibits a positive correlation with the binding energy between molecules, indicating viscosity is directly correlated to intermolecular interactions. Salts in electrolytes enlarge the viscosity significantly with increasing concentrations while diluents serve as the viscosity reducer, which is attributed to the varied binding strength from cation–anion and cation–solvent associations. This work develops an accurate and efficient method for computing the electrolyte viscosity and affords deep insight into viscosity at the molecular level, which exhibits the huge potential to accelerate advanced electrolyte design for next-generation rechargeable batteries. 相似文献
13.
Xin Jin Tianqi Fang Jinyao Wang Mengyuan Liu Siyuan Pan Bala Subramaniam Jian Shen Chaohe Yang Raghunath V. Chaudhari 《Chemical record (New York, N.Y.)》2019,19(9):1952-1994
Conversion of biomass to chemicals provides essential products to human society from renewable resources. In this context, achieving atom‐economical and energy‐efficient conversion with high selectivity towards target products remains a key challenge. Recent developments in nanostructured catalysts address this challenge reporting remarkable performances in shape and morphology dependent catalysis by metals on nano scale in energy and environmental applications. In this review, most recent advances in synthesis of heterogeneous nanomaterials, surface characterization and catalytic performances for hydrogenation and oxidation for biorenewables with plausible mechanism have been discussed. The perspectives obtained from this review paper will provide insights into rational design of active, selective and stable catalytic materials for sustainable production of value‐added chemicals from biomass resources. 相似文献
14.
Peng Hei Ya Sai Chang Liu Wenjie Li Jing Wang Xiaoqi Sun Yu Song Xiao-Xia Liu 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2024,136(9):e202316082
Aqueous zinc-sulfur (Zn-S) batteries show great potential for unlocking high energy and safety aqueous batteries. Yet, the sluggish kinetic and poor redox reversibility of the sulfur conversion reaction in aqueous solution challenge the development of Zn-S batteries. Here, we fabricate a high-performance Zn-S battery using highly water-soluble ZnI2 as an effective catalyst. In situ experimental characterizations and theoretical calculations reveal that the strong interaction between I− and the ZnS nanoparticles (discharge product) leads to the atomic rearrangement of ZnS, weakening the Zn-S bonding, and thus facilitating the electrochemical oxidation reaction of ZnS to S. The aqueous Zn-S battery exhibited a high energy density of 742 Wh kg(sulfur)−1 at the power density of 210.8 W kg(sulfur)−1 and good cycling stability over 550 cycles. Our findings provide new insights about the iodide catalytic effect for cathode conversion reaction in Zn-S batteries, which is conducive to promoting the future development of high-performance aqueous batteries. 相似文献
15.
16.
Haikuo Zhang Ruhong Li Long Chen Yingzhu Fan Hao Zhang Ruixin Zhang Lei Zheng Junbo Zhang Shouhong Ding Yongjian Wu Baochen Ma Shuoqing Zhang Dr. Tao Deng Prof. Lixin Chen Prof. Yanbin Shen Prof. Xiulin Fan 《Angewandte Chemie (International ed. in English)》2023,62(11):e202218970
Although great progress has been made in new electrolytes for lithium metal batteries (LMBs), the intrinsic relationship between electrolyte composition and cell performance remains unclear due to the lack of valid quantization method. Here, we proposed the concept of negative center of electrostatic potential (NCESP) and Mayer bond order (MBO) to describe solvent capability, which highly relate to solvation structure and oxidation potential, respectively. Based on established principles, the selected electrolyte with 1.7 M LiFSI in methoxytrimethylsilane (MOTMS)/ (trifluoromethyl)trimethylsilane (TFMTMS) shows unique hyperconjugation nature to stabilize both Li anode and high-voltage cathode. The 4.6 V 30 μm Li||4.5 mAh cm−2 lithium cobalt oxide (LCO) (low N/P ratio of 1.3) cell with our electrolyte shows stable cycling with 91 % capacity retention over 200 cycles. The bottom-up design concept of electrolyte opens up a general strategy for advancing high-voltage LMBs. 相似文献
17.
18.
Yu Zhang Shuting Zhang Junguo Ma Dr. Xin Chen Dr. Caiyun Nan Prof. Chen Chen 《Angewandte Chemie (International ed. in English)》2023,62(15):e202218926
Li-oxygen batteries have attracted much attention due to its ultra-high theoretical specific capacity, but the discharge product Li2O2 is easy to accumulate, leading to low battery stability. Here, we demonstrate a series of high-efficiency cathode catalysts of Co3O4 loaded with single-atomic metals (M=Ru, Pd, Pt, Au, Ir). The single-atomic metal could substitute the central Co atom in the octahedral coordination structure and maintain the structural stability; benefiting from the electron promoter effect, rendering more highly active Co3+ exposed, providing rich nucleation sites for Li2O2 deposition. And the loaded M atoms could separate the active Co3+ centers, thereby regulating the dispersion of Li2O2 to obtained a sheet-like morphology, which could facilitate its decomposition in the subsequent charge cycle. Our work found that the single atoms could effectively modulate the active metal oxide with which it is coordinated, thus collectively boosting the catalytic performance. 相似文献
19.
Yiming Liu Prof. Jing Wang Qinhao Shi Mouhui Yan Shengyu Zhao Dr. Wuliang Feng Dr. Ruijuan Qi Prof. Jiaqiang Xu Prof. Jiayan Luo Prof. Jiujun Zhang Prof. Yufeng Zhao 《Angewandte Chemie (International ed. in English)》2023,62(29):e202303875
Transition-metal phosphides (TMPs) as typical conversion-type anode materials demonstrate extraordinary theoretical charge storage capacity for sodium ion batteries, but the unavoidable volume expansion and irreversible capacity loss upon cycling represent their long-standing limitations. Herein we report a stress self-adaptive structure with ultrafine FeP nanodots embedded in dense carbon microplates skeleton (FeP@CMS) via the spatial confinement of carbon quantum dots (CQDs). Such an architecture delivers a record high specific capacity (778 mAh g−1 at 0.05 A g−1) and ultra-long cycle stability (87.6 % capacity retention after 10 000 cycles at 20 A g−1), which outperform the state-of-the-art literature. We decode the fundamental reasons for this unprecedented performance, that such an architecture allows the spontaneous stress transfer from FeP nanodots to the surrounding carbon matrix, thus overcomes the intrinsic chemo-mechanical degradation of metal phosphides. 相似文献
20.
Prof. Jia-Yan Liang Dr. Yanyan Zhang Prof. Sen Xin Dr. Shuang-Jie Tan Xin-Hai Meng Dr. Wen-Peng Wang Prof. Ji-Lei Shi Prof. Zhen-Bo Wang Prof. Fuyi Wang Prof. Li-Jun Wan Prof. Yu-Guo Guo 《Angewandte Chemie (International ed. in English)》2023,62(16):e202300384
In overcoming the Li+ desolvation barrier for low-temperature battery operation, a weakly-solvated electrolyte based on carboxylate solvent has shown promises. In case of an organic-anion-enriched primary solvation sheath (PSS), we found that the electrolyte tends to form a highly swollen, unstable solid electrolyte interphase (SEI) that shows a high permeability to the electrolyte components, accounting for quickly declined electrochemical performance of graphite-based anode. Here we proposed a facile strategy to tune the swelling property of SEI by introducing an inorganic anion switch into the PSS, via LiDFP co-solute method. By forming a low-swelling, Li3PO4-rich SEI, the electrolyte-consuming parasitic reactions and solvent co-intercalation at graphite-electrolyte interface are suppressed, which contributes to efficient Li+ transport, reversible Li+ (de)intercalation and stable structural evolution of graphite anode in high-energy Li-ion batteries at a low temperature of −20 °C. 相似文献