首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although long-lived triplet charge-transfer (3CT) state with high energy level has gained significant attention, the development of organic small molecules capable of achieving such states remains a major challenge. Herein, by using the through-space electronic coupling effect, we have developed a compound, namely NIC-DMAC, which has a long-lived 3CT state at the single-molecule level with a lifetime of 210 ms and a high energy level of up to 2.50 eV. Through a combination of experimental and computational approaches, we have elucidated the photophysical processes of NIC-DMAC, which involve sequential transitions from the first singlet excited state (S1) that shows a 1CT character to the first triplet excited state (T1) that exhibits a local excited state feature (3LE), and then to the second triplet excited state (T2) that shows a 3CT character (i.e., S1 (1CT)→T1 (3LE)→T2 (3CT)). The long lifetime and high energy level of its 3CT state have enabled NIC-DMAC as an initiator for photocuring in double patterning applications.  相似文献   

2.
A series of novel poly(amine–amide–imide)s (PAAIs) based on tetraphenyl‐p‐phenylenediamine (TPPA) units showing anodically/cathodically electrochromic characteristic with three primary colors [red, green, and blue (RGB)] were prepared from the direct polycondensation of the TPPA‐based diamine monomer with various aromatic bis(trimellitimide)s. These multicolored electrochromic polymers were readily soluble in polar organic solvents and showed excellent thermal stability associated with high glass‐transition temperatures (288–314 °C) and high‐char yield (higher than 60% at 800 °C in nitrogen). The PAAI films revealed electrochemical oxidation and reduction accompanied with high contrast of optical transmittance color changes from the pale yellow neutral state to the green/blue oxidized state and red reduced state, respectively. The electrochromic films had high‐coloration efficiency (CE = 178 and 242 cm2/C at the first and the second stages, respectively), low‐switching time, and good redox stability, which still retained a high electroactivity after long‐term redox cycles. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

3.
Electrochemical impedance spectroscopy (EIS) was first used for the characterization of polyfuran (PFu) films thathad been formed electrochemically on an Au electrode. The polyfuran was measured in high oxidation state, intermediateoxidation state and reduction state, respectively. As the oxidation level is increased, the ionic conductivity of PFu/BF_4~-increases. And impedance studies on PFu show that the anion BF_4~- appears to be mobile with a high diffusion coefficient ofapproximately 10~(-8)cm~2· s~(-1).  相似文献   

4.
To analyze the effect of redox state changes on the second-order nonlinear optical (NLO) responses of organoimido-functionalized Keggin-type heteropolyanions, the excitation properties and static second-order polarizabilities of fully oxidized state, the first and second reduced states were calculated by means of the time-dependent density functional theory (TDDFT) method combined with the sum-over-states (SOS) formalism. The incorporation of extra electrons causes significant enhancement in the second-order NLO activity. The reduced complexes show more than three times the efficiency of fully oxidized state. Moreover, the NLO activities for PW11ReVNPh system can also be modified by controlling the spin multiplicity. The high spin state (3 3) has twice larger β vec value than the low spin state (1 3). The characteristic of the charge-transfer transition corresponding to the dominant contributions to the β vec values indicates that metal-centered redox processes influence the intramolecular donor or acceptor character, which accordingly leads to the variations in the computed β values. Owing to the reversible and manipulable redox processes, these kinds of the POM-based hybrid complexes could comprise a promising family of three-state redox-switchable molecular device combining chromic, magnetic, and NLO output.  相似文献   

5.
Stripping voltammetry has been investigated for the determination of traces of ribonuclease, somatostatin, oxytocin, felypressin, insulin and oxidized glutathione at concentrations down to 1.5 × 10?9 M. Repeated cyclic potential scans with an initial cathodic scan were used after accumulation at +0.1 to –0.3 V vs. Ag/AgCl at a hanging mercury drop electrode. In presence of excess of copper(II) ion, the first two compounds yield a well-defined peak couple at ?0.5 to ?0.6 V, with cathodic and anodic peaks of equal height, the accumulated product being adsorbed in both its oxidized and reduced state. Oxytocin and felypressin first yield two unresolved cathodic peaks, one of which disappears in the second scan cycle. Oxidized glutathione yields a large cathodic peak but a small anodic peak because of desorption in the reduced state. Excess of copper(II) is reduced during the accumulation, so that the electrode is actually copper amalgam. The peaks obtained with copper(II) present are considered to be due to redox reactions of copper complexes formed with the cysteine parts of the molecules. These peaks are suitable for quantitative purposes; calibration equations are given. Without copper(II), the substances show stripping responses of different complexity and magnitude. Insulin gives usable stripping peaks only without copper ions.  相似文献   

6.
The mechanism behind reverse intersystem crossing (rISC) in metal-based TADF emitters is still under debate. Thermal rISC necessitates small singlet/triplet energy gaps as realized in donor-acceptor systems with charge-transfer excited states. However, their associated spin-orbit couplings are too small to account for effective rISC. Here, we report the first nonadiabatic dynamics simulation of the rISC process in a carbene-copper(I)-carbazolyl TADF emitter. Efficient rISC on a picosecond time scale is demonstrated for an initial triplet minimum geometry that exhibits a perpendicular orientation of the ligands. The dynamics involves an intermediate higher-lying triplet state of metal-to-ligand charge transfer character (3MLCT), which enables large spin-orbit couplings with the lowest singlet charge transfer state. The mechanism is completed in the S1 state, where the complex can return to a co-planar coordination geometry that presents high fluorescence efficiency.  相似文献   

7.
A key step in cytochrome P450 catalysis includes the spin‐state crossing from low spin to high spin upon substrate binding and subsequent reduction of the heme. Clearly, a weak perturbation in P450 enzymes triggers a spin‐state crossing. However, the origin of the process whereby enzymes reorganize their active site through external perturbations, such as hydrogen bonding, is still poorly understood. We have thus studied the impact of hydrogen‐bonding interactions on the electronic structure of a five‐coordinate iron(III) octaethyltetraarylporphyrin chloride. The spin state of the metal was found to switch reversibly between high (S=5/2) and intermediate spin (S=3/2) with hydrogen bonding. Our study highlights the possible effects and importance of hydrogen‐bonding interactions in heme proteins. This is the first example of a synthetic iron(III) complex that can reversibly change its spin state between a high and an intermediate state through weak external perturbations.  相似文献   

8.
Heptacene ( 1 ) has been produced via a monoketone precursor, 2 , which was prepared from 1,2,4,5-tetrabromobenzene in nine steps in a total yield of 10 %. Compound 2 was converted to 1 quantitatively by heating at 202 °C. Heptacene exhibited high thermal stability in the solid state without any observable change over two months. To investigate the potential value of 1 as a material for p-type organic field-effect transistors (OFETs), top-contact OFET devices were fabricated by vacuum deposition of 1 onto a hexamethyldisilazane (HMDS)/SiO2/Si substrate. The best hole mobility performance was 2.2 cm2 V−1 s−1. This is the first report of stable heptacene being used in an effective device and examined for its charge carrier properties.  相似文献   

9.
A novel electrochromic material, poly(indole-6-carboxylic acid) (PIn), and its application in electrochromic devices (ECDs) are discussed. PIn was switched between yellow in the reduced state and green in the oxidized state. Electrochromic switching of PIn film shows that it has fast switching time and high optical contrast. ECD based on PIn and poly(3,4-ethylenedioxythiophene) (PEDOT) was also fabricated and characterized. The response time of this device was found to be 1.0 s and the optical contrast was 45%. The coloration efficiency (CE) was calculated to be 510 cm2 C?1. Clear change from green (neutral) to blue-violet color (oxidized) of ECD is demonstrated with robust cycle life. These results provide an avenue for applications of polyindole family in electrochromic devices.  相似文献   

10.
In situ X‐ray absorption fine structure (XAFS) analyses were performed on rechargeable molecular cluster batteries (MCBs), which were formed by a lithium anode and cathode‐active material, [Mn12O12(CH3CH2C(CH3)2COO)16(H2O)4] with tert‐pentyl carboxylate ligand (abbreviated as Mn12tPe), and with eight Mn3+ and four Mn4+ centers. This mixed valence cluster compound is used in an effort to develop a reusable in situ battery cell that is suitable for such long‐term performance tests. The Mn12tPe MCBs exhibit a large capacity of approximately 210 Ah kg−1 in the voltage range V=4.0–2.0 V. The X‐ray absorption near‐edge structure (XANES) spectra exhibit a systematic change during the charging/discharging with an isosbestic point at 6555 eV, which strongly suggests that only either the Mn3+ or Mn4+ ions in the Mn12 skeleton are involved in this battery reaction. The averaged manganese valence, determined from the absorption‐edge energy, decreased monotonically from 3.3 to 2.5 in the first half of the discharging (4.0>V>2.8 V), but changed little in the second half (2.8>V>2.0 V). The former valence change indicates a reduction of the initial [Mn12]0 state by approximately ten electrons, which corresponds well with the half value of the observed capacity. Therefore, the large capacity of the Mn12 MCBs can be understood as being due to a combination of the redox change of the manganese ions and presumably a capacitance effect. The extended X‐ray absorption fine structure (EXAFS) indicates a gradual increase of the Mn2+ sites in the first half of the discharging, which is consistent with the XANES spectra. It can be concluded that the Mn12tPe MCBs would include a solid‐state electrochemical reaction, mainly between the neutral state [Mn12]0 and the super‐reduced state [Mn12]8− that is obtained by a local reduction of the eight Mn3+ ions in Mn12 toward Mn2+ ions.  相似文献   

11.
Well‐ordered periodic mesoporous organosilicas (PMOs) functionalized with high contents of carboxylic acid (?COOH) groups, up to 85 mol % based on silica, were synthesized by co‐condensation of 1,2‐bis(triethoxysilyl)ethane (BTEE) and carboxyethylsilanetriol sodium salt (CES) under acidic conditions by using alkyl poly(oxyethylene) surfactant Brij 76 as a structure‐directing agent. A variety of techniques including powder X‐ray diffraction (XRD), nitrogen adsorption/desorption, Fourier‐transformed infrared (FTIR), transmission electron microscopy (TEM), 13C‐ and 29Si solid‐state nuclear magnetic resonance (NMR) were used to characterize the products. The materials thus obtained were used as an effective support to synthesize metal nanoparticles (Ag and Pt) within the channel of 2D hexagonal mesostructure of PMOs. The size and distribution of the nanoparticles were observed to be highly dependent on the interaction between the carboxylic acid functionalized group and the metal precursors. The size of Pt nanoparticles reduced from 3.6 to 2.5 nm and that of Ag nanoparticles reduced from 5.3 to 3.4 nm with the increase in the ?COOH loading from 10 to 50 %.  相似文献   

12.
Significantly higher in energy (24 kJ mol−1) than the triplet ground state (3Σg) is the 1Δg state of ethenedithione (S=C=C=S), in agreement with Hund's rule. This result was obtained from high-level ab initio calculations. Thus, ethenedithione cannot, as had been proposed, be considered as the first example for the violation of Hund's rule in an equilibrium structure.  相似文献   

13.
Sulfide:quinone oxidoreductase (SQR) is a flavin‐dependent enzyme that plays a physiological role in two important processes. First, it is responsible for sulfide detoxification by oxidizing sulfide ions (S2? and HS?) to elementary sulfur and the electrons are first transferred to flavin adenine dinucleotide (FAD), which in turn passes them to the quinone pool in the membrane. Second, in sulfidotrophic bacteria, SQRs play a key role in the sulfide‐dependent respiration and anaerobic photosynthesis, deriving energy for their growth from reduced sulfur. Two mechanisms of action for SQR have been proposed: first, nucleophilic attack of a Cys residue on the C4 of FAD, and second, an alternate anionic radical mechanism by direct electron transfer from Cys to the isoalloxazine ring of FAD. Both mechanisms involve a common anionic intermediate that it is stabilized by a relevant anion–π interaction and its previous formation (from HS? and Cys‐S‐S‐Cys) is also facilitated by reducing the transition‐state barrier, owing to an interaction that involves the π system of FAD. By analyzing the X‐ray structures of SQRs available in the Protein Data Bank (PDB) and using DFT calculations, we demonstrate the relevance of the anion–π interaction in the enzymatic mechanism.  相似文献   

14.
A dinuclear CoII complex, [Co2(tphz)(tpy)2]n+ (n=4, 3 or 2; tphz: tetrapyridophenazine; tpy: terpyridine), has been assembled using the redox‐active and strongly complexing tphz bridging ligand. The magnetic properties of this complex can be tuned from spin‐crossover with T1/2≈470 K for the pristine compound (n=4) to single‐molecule magnet with an ST=5/2 spin ground state when once reduced (n=3) to finally a diamagnetic species when twice reduced (n=2). The two successive and reversible reductions are concomitant with an increase of the spin delocalization within the complex, promoting remarkably large magnetic exchange couplings and high‐spin species even at room temperature.  相似文献   

15.
16.
A relatively simple model for calculation of the energetics of gas-phase proton transfer reactions and the maximum charge state of multiply protonated ions formed by electrospray ionization is presented. This model is based on estimates of the intrinsic proton transfer reactivity of sites of protonation and point charge Coulomb interactions. From this model, apparent gas-phase basicities (GBapp) of multiply protonated ions are calculated. Comparison of this value to the gas-phase basicity of the solvent from which an ion is formed enables a maximum charge state to be calculated. For 13 commonly electrosprayed proteins, our calculated maximum charge states are within an average of 6% of the experimental values reported in the literature. This indicates that the maximum charge state for proteins is determined by their gas-phase reactivity. Similar results are observed for peptides with many basic residues. For peptides with few basic residues, we find that the maximum charge state is better correlated to the charge state in solution. For low charge state ions, we find that the most basic sites Arg, Lys, and His are preferentially protonated. A significant fraction of the less basic residues Pro, Trp, and Gln are protonated in high charge state ions. The calculated GBapp of individual protonation sites varies dramatically in the high charge state ions. From these values, we calculate a reduced cross section for proton transfer reactivity that is significantly lower than the Langevin collision frequency when the GBapp of the ion is approximately equal to the GB of the neutral base.  相似文献   

17.
A dinuclear CoII complex, [Co2(tphz)(tpy)2]n+ (n=4, 3 or 2; tphz: tetrapyridophenazine; tpy: terpyridine), has been assembled using the redox‐active and strongly complexing tphz bridging ligand. The magnetic properties of this complex can be tuned from spin‐crossover with T1/2≈470 K for the pristine compound (n=4) to single‐molecule magnet with an ST=5/2 spin ground state when once reduced (n=3) to finally a diamagnetic species when twice reduced (n=2). The two successive and reversible reductions are concomitant with an increase of the spin delocalization within the complex, promoting remarkably large magnetic exchange couplings and high‐spin species even at room temperature.  相似文献   

18.
Two 15-membered octaazamacrocyclic nickel(II) complexes are investigated by theoretical methods to shed light on their affinity forwards binding and reducing CO2. In the first complex 1[NiIIL]0, the octaazamacrocyclic ligand is grossly unsaturated (π-conjugated), while in the second 1[NiIILH]2+ one, the macrocycle is saturated with hydrogens. One and two-electron reductions are described using Mulliken population analysis, quantum theory of atoms in molecules, localized orbitals, and domain averaged fermi holes, including the characterization of the Ni-CCO2 bond and the oxidation state of the central Ni atom. It was found that in the [NiLH] complex, the central atom is reduced to Ni0 and/or NiI and is thus able to bind CO2 via a single σ bond. In addition, the two-electron reduced 3[NiL]2− species also shows an affinity forwards CO2.  相似文献   

19.
Astatine-211 is one of the most promising -emitters for targeted cancer radiotherapy. However, research and clinical trials involving 211At-labeled radiopharmaceuticals have often been impeded due to the irregular and sometimes inconveniently low recovery yields obtained by the currently used dry distillation procedure. Therefore, a wet harvesting procedure isolating 211At from an irradiated 209Bi target was explored. The procedure involves target dissolution in concentrated HNO3 and extraction of the high oxidation state 211At activity with butyl or isopropyl ether. This method resulted in consistent and nearly quantitative yields. The activity was re-extracted in aqueous phase and applied to NIS6 UVW human glioma cells transfected with cDNA encoding the human sodium/iodide symporter (NIS). The significant and specific uptake of 211At activity by these cells suggests that in the ether phase, high oxidation state 211At is reduced to [211At]astatide anion. The synthesis of the first astatinated organic compound derived from wet harvested 211At, 3-astatobenzoic acid (ABA), was achieved.This work was supported by Grants EB002980, CA42324 and CA91927 from the U.S. National Institutes of Health. Special thanks go to Michael Dailey and Shawn Murphy from the Duke University Medical Center PET Cyclotron Department for providing us with 211At activities and to Kevin Alston for the preparation of the bismuth targets. NIS cDNA was kindly gifted by Dr. Sissy M. Jhiang from Ohio State University, Columbus, Ohio.  相似文献   

20.
Astatine-211 is one of the most promising -emitters for targeted cancer radiotherapy. However, research and clinical trials involving 211At-labeled radiopharmaceuticals have often been impeded due to the irregular and sometimes inconveniently low recovery yields obtained by the currently used dry distillation procedure. Therefore, a wet harvesting procedure isolating 211At from an irradiated 209Bi target was explored. The procedure involves target dissolution in concentrated HNO3 and extraction of the high oxidation state 211At activity with butyl or isopropyl ether. This method resulted in consistent and nearly quantitative yields. The activity was re-extracted in aqueous phase and applied to NIS6 UVW human glioma cells transfected with cDNA encoding the human sodium/iodide symporter (NIS). The significant and specific uptake of 211At activity by these cells suggests that in the ether phase, high oxidation state 211At is reduced to [211At]astatide anion. The synthesis of the first astatinated organic compound derived from wet harvested 211At, 3-astatobenzoic acid (ABA), was achieved.This work was supported by Grants EB002980, CA42324 and CA91927 from the U.S. National Institutes of Health. Special thanks go to Michael Dailey and Shawn Murphy from the Duke University Medical Center PET Cyclotron Department for providing us with 211At activities and to Kevin Alston for the preparation of the bismuth targets. NIS cDNA was kindly gifted by Dr. Sissy M. Jhiang from Ohio State University, Columbus, Ohio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号