首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Artificial photosynthesis, which converts carbon dioxide into hydrocarbon fuels, is a promising strategy to overcome both global warming and energy crisis. Herein, the geometric position of Cu and Ga on ultra-thin CuGaS2/Ga2S3 is oriented via a sulfur defect engineering, and the unprecedented C2H4 yield selectivity is ≈93.87% and yield is ≈335.67 µmol g−1 h−1. A highly delocalized electron distribution intensity induced by S vacancy indicates that Cu and Ga adjacent to S vacancy form Cu–Ga metallic bond, which accelerates the photocatalytic reduction of CO2 to C2H4. The stability of the crucial intermediates (*CHOHCO) is attributed to the upshift of the d-band center of ultra-thin CGS/GS. The C–C coupling barrier is intrinsically reduced by the dominant exposed Cu atoms on the 2D ultra-thin CuGaS2/Ga2S3 in the process of photocatalytic CO2 reduction, which captures *CO molecules effectively. This study proposes a new strategy to design photocatalyst through defect engineering to adjust the selectivity of photocatalytic CO2 reduction.  相似文献   

2.
Mn-doped ZnS nanoparticles (NPs) were prepared with dopants at various concentrations using a facile, simple and inexpensive wet chemical method at room temperature. The physicochemical properties of NPs were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), ultraviolet-visible absorption spectroscopy (UV–vis) and photoluminescence (PL). XRD analysis confirmed formation of ZnS with zinc blende structure and average crystallite size of about 2 nm. TEM analysis revealed formation of hyperfine NPs with rather good uniformity. The room temperature photoluminescence (PL) spectrum of ZnS:Mn2+ exhibited an orange-red emission around 600 nm. The maximum PL intensity was observed for 7.5% Mn doped ZnS. The photocatalytic performance of ZnS:Mn2+ was successfully demonstrated for degradation of three different model dyes (i.e. Rhodimine B (Rh. B), Bromocresol Green (BCG) and Bromochlorophenol Blue (BCB)). The results revealed that not only was there a remarkable difference in photocatalytic performance of Mn doped ZnS for all three different dyes at different dopant concentrations but also photocatalytic activity was decreased by Mn doping.  相似文献   

3.
High entropy oxide (HEO) has emerged as a new class of anode material for Li-ion batteries (LIBs) by offering infinite possibilities to tailor the charge–discharge properties. While the advantages of single-phase HEO anodes are realized, the effects of a secondary phase are overlooked. In this study, two kinds of Co-free HEOs are prepared, containing Cr, Mn, Fe, Ni, and Zn, for use as LIB anodes. One is a plain cubic-structure high entropy spinel oxide HESO (C) prepared using a solvothermal method. The other HESO (C+T) contains an extra secondary phase of tetragonal spinel oxide and is prepared using a hydrothermal method. It is demonstrated that the secondary tetragonal spinel phase introduces phase boundaries and defects/oxygen vacancies within HESO (C+T), which improve the redox kinetics and reversibility during electrode lithiation/delithiation. Density functional theory calculation is performed to assess the phase stability of cubic spinel, tetragonal spinel, and rock-salt structures, and validate the cycling stability of the electrodes upon charging–discharging. The secondary-phase-induced rate capability and cyclability enhancement of HEO electrodes are for the first time demonstrated. A HESO (C+T)||LiNi0.8Co0.1Mn0.1O2 full cell is assembled and evaluated, showing a promising gravimetric energy density of ≈610 Wh kg−1 based on electrode-active materials.  相似文献   

4.
The development of precious-metal alternative electrocatalysts for oxygen reduction reaction (ORR) is highly desired for a variety of fuel cells, and single atom catalysts (SACs) have been envisaged to be the promising choice. However, there remains challenges in the synthesis of high metal loading SACs (>5 wt.%), thus limiting their electrocatalytic performance. Herein, a facile self-sacrificing template strategy is developed for fabricating Co single atoms along with Co atomic clusters co-anchored on porous-rich nitrogen-doped graphene (Co SAs/AC@NG), which is implemented by the pyrolysis of dicyandiamide with the formation of layered g-C3N4 as sacrificed templates, providing rich anchoring sites to achieve high Co loading up to 14.0 wt.% in Co SAs/AC@NG. Experiments combined with density functional theory calculations reveal that the co-existence of Co single atoms and clusters with underlying nitrogen doped carbon in the optimized Co40SAs/AC@NG synergistically contributes to the enhanced electrocatalysis for ORR, which outperforms the state-of-the-art Pt/C catalysts with presenting a high half-wave potential (E1/2 = 0.890 V) and robust long-term stability. Moreover, the Co40SAs/AC@NG presents excellent performance in Zn–air battery with a high-peak power density (221 mW cm−2) and strong cycling stability, demonstrating great potential for energy storage applications.  相似文献   

5.
6.
Efficient oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) processes highly rely on the rational design and synthesis of high-performance electrocatalysts. Herein, comprehensive characterizations and density functional theory (DFT) calculations are combined to verify the important roles of the crystallinity and oxygen vacancy levels of Co(II) oxide (CoO) on ORR and OER activities. A facile and controllable vacuum-calcination strategy is utilized to convert Co(OH)2 into oxygen-defective amorphous-crystalline CoO (namely ODAC-CoO) nanosheets. With the carefully controlled crystallinity and oxygen vacancy levels, the optimal ODAC-CoO sample exhibits dramatically enhanced ORR and OER electrocatalytic activities compared with the pure crystalline CoO counterpart. The assembled liquid and quasi-solid-state Zn–air batteries with ODAC-CoO as cathode material achieve remarkable specific capacity, power density, and excellent cycling stability, outperforming the benchmark Pt/C + IrO2 catalysts. This study theoretically proposes and experimentally demonstrates that the simultaneous introduction of amorphous structures and oxygen vacancies could be an effective avenue towards high-performance electrocatalytic ORR and OER.  相似文献   

7.
Single-atom catalysts (SACs) have garnered enormous interest due to their remarkable catalysis activity. However, the exploitation of universal synthesis strategy and regulation of coordination environment of SACs remain a great challenge. Herein, a versatile synthetic strategy is demonstrated to generate a series of transition metal SACs (M SAs/NC, M = Co, Cu, Mn; NC represents the nitrogen-doped carbon) through defect engineering of metal-organic frameworks (MOFs). The interatomic distance between metal sites can be increased by deliberately introducing structural defects within the MOF framework, which inhibits metal aggregation and consequently results in an approximately 70% increase in single metal atom yield. Additionally, the coordination structures of metal sites can also be facilely tuned. The optimized Co SAs/NC-800 exhibits superior activity and excellent reusability for the selective hydrogenation of nitroarenes, surpassing several state-of-art non-noble-metal catalysts. This study provides a new avenue for the universal fabrication of transition metal SACs.  相似文献   

8.
Constructing high performance electrocatalysts for lithium polysulfides (LiPSs) adsorption and fast conversion is the effective way to boost practical energy density and cycle life of rechargeable lithium–sulfur (Li–S) batteries, which have been regarded as the most promising next generation high energy density battery but still suffering from LiPSs shuttle effect and slow sulfur redox kinetics. Herein, a single atomic catalyst of Fe–N4 moiety doping periphery with S (Fe–NSC) is theoretically and experimentally demonstrated to enhance LiPSs adsorption and facilitated sulfur conversion, due to more charge density accumulated around Fe–NSC configuration relative to bare Fe–N4 moiety. Thereafter, the graphene oxide supported Fe–NSC catalyst (Fe–NSC@GO) is modified to the commercial separator through a simple slurry casting method. Thus, Li–S cells with Fe–NSC@GO modified separators display high discharge capacity and excellent cyclability, showing 1156 mAh g−1 at 1 C rate and a low capacity decay of only 0.022% per cycle over 1000 cycles. Even with a high sulfur loading of 5.1 mg cm−2, the cell still delivers excellent cycling stability. This work provides a fresh insight into electrocatalyst structural tuning to improve the electrochemical performance of Li–S batteries.  相似文献   

9.
Zn–iodine (I2) battery, as a promising energy storage device, especially under high I2 loading, is harassed by the shuttle effect of the soluble polyiodide intermediates. Herein, the bifunctional role of 2D carbon nanosponge with rich P-dopant (4.2 at%) and large specific surface area (1966 m2 g−1) in anchoring I2/Ix (x = 1, 3 or 5) and catalyzing their mutual conversion is reported. Both experiment and computational results reveal the transfer of electrons from the P-doped site to iodine species, showing strong interfacial interaction. When being used as a host, it possesses high specific capture capacity for I2 (3.34 giodine g−1 or 1.6 mgiodine m−2) and Ix (6.12 gtriiodide g−1 or 3.1 mgtriiodide m−2), which thus effectively suppresses the shuttle effect, supported by in situ UV–vis and Raman spectra. In addition to the strong interfacial interaction that favors iodine conversion, the P-doped sites can also catalyze the conversion of I5 to I2, which is the rate-determining step. Consequently, Zn–I2 batteries under a high I2 content (70 wt%) deliver high specific capacity (220.3 mAh g−1), superior Coulombic efficiency (>99%), and low self-discharge rate; moreover, they can also operate steadily at 2 A g−1 with ignorable capacity decay for 10 000 cycles.  相似文献   

10.
Local geometric strain engineering is useful for modulating the performance of nitrogen-coordinated transition metal-carbon catalysts. However, realizing the nano-level strain is technically challenging. Additionally, the structure-property relationship between strain degree and performance remains poorly understood. Herein, it is conceptually predict that geometric bending induces more electron transfer from Zn to the coordinated N in Zn─N─C, leading to a positive shift of the d-band center of the Zn atom, which promotes the adsorption reduction process of the O2 molecule and thus increases the intrinsic oxygen reduction reaction (ORR) activity. Moreover, a low-temperature non-saturated coordination strategy is proposed to prepare spherical porous carbon catalysts with surface-enriched geometrically bent (20-50°) Zn─N─C sites. Benefiting from the highly active Zn─N─C sites, large specific surface area and abundant pore structure, the optimized catalyst (S─Zn─N─C-950) exhibited excellent intrinsic alkaline ORR activity (half-wave potential E1/2 = 0.89 V) and high zinc-air battery performance (peak power density of 229.2 mW cm−2), exceeding that of commercial Pt/C catalysts. Density functional theory (DFT) calculations show that when the geometrical bending angle is 30–45°, Zn centers with suitable charge transfer to the surrounding N can produce a moderate adsorption strength to the oxygen intermediate state, resulting in optimal ORR activity.  相似文献   

11.
Growth of intermetallic compounds (IMC) at the interface of Sn–2.0Ag–2.5Zn solder joints with Cu, Ni, and Ni–W substrates have been investigated. For the Cu substrate, a Cu5Zn8 IMC layer with Ag3Sn particles on top was observed at the interface; this acted as a barrier layer preventing further growth of Cu–Sn IMC. For the Ni substrate, a thin Ni3Sn4 film was observed between the solder and the Ni layer; the thickness of the film increased slowly and steadily with aging. For the Ni–W substrate, a thin Ni3Sn4 film was observed between the solder and Ni–W layer. During the aging process a thin layer of the Ni–W substrate was transformed into a bright layer, and the thickness of bright layer increased with aging.  相似文献   

12.
In this paper, we consider the Hybrid Decode–Amplify–Forward protocol with the \(n\) th best-relay selection scheme. In the best-relay selection scheme, the best relay only forwards the source signal to the destination, regardless of working in the Amplify-and-Forward mode or the Decode-and-Forward mode. However, the best relay might be unavailable due to some reasons; hence we might bring into play the second, third or generally the \(n\) th best relay. We derive closed-form expression for the outage probability using the probability density function and moment generating function of the signal-to-noise ratio of the relayed signal at the destination node. Results show that with the \(n\) th best relay the diversity order is equal to \((m-n+2)\) where \(m\) is the number of relays. Simulation results are also given to verify the analytical results.  相似文献   

13.
A possible explanation is suggested for discrepancies between experimental values obtained by different authors for the barrier height at the same metal–semiconductor junction. It is supposed that the problem is caused primarily by the structural inhomogeneity of the metal. As a result, the junction behaves as an assembly of a large number of subjunctions connected in parallel. To determine the effect of metal inhomogeneity on the properties of a junction, the dependence of the barrier height in a Schottky diode on the junction area is investigated under the assumption that, with an increase in the area of a junction between a singlecrystal semiconductor and a polycrystalline metal, the degree of inhomogeneity and, thus, the number of subjunctions, increases.  相似文献   

14.
Svit  K. A.  Zhuravlev  K. S. 《Semiconductors》2019,53(11):1540-1544
Semiconductors - The morphology of CdS nanocrystal arrays self-assembled during the evaporation of a behenic-acid organic matrix on a wetted substrate surface is studied by atomic force microscopy....  相似文献   

15.
The charge–exciton interaction at the donor/acceptor interface plays a significant role in the exciton dissociation processes, and thus influences the performance of organic solar cells. In this work, the evidences of photocurrent generation via hole–exciton interaction (HEI) at the organic semiconductor interface in organic solar cells, which is the counterpart of photocurrent generated by electron–exciton interaction, is demonstrated. A heterojunction, composed of copper phthalocyanine (CuPc) and fullerene (C60), is used to provide free holes that interact with the excitons supplied by perfluorinated hexadecafluorophthalo-cyaninatozinc (F16ZnPc). The fact that photocurrent generation via HEI is well evidenced by: (1) a short circuit current of 0.38 mA cm−2; (2) the jump of an external quantum efficiency (EQE) around 800 nm after adding a bias light; (3) the EQE variations under bias light of different wavelengths and light intensities; and (4) the superlinear dependence of the photocurrent on the light intensity.  相似文献   

16.
The kinetics of phase formation in Ti–Co–Si–N and Ti–Co–N thin films on Si and SiO2is investigated experimentally. With the deposition on Si, rapid thermal annealing (T 900°C) is shown to cause phase separation that ends in a TiN/CoSi2/Si structure. If SiO2is used, the alloy reacts with the substrate to produce compounds that are difficult to remove with selective etchants. This limits the potential uses of this process in the fabrication of contact systems for CMOS devices. It is shown that structure- and phase-dissimilar films can be formed on Si and SiO2by means of the surface-diffusion reactions between a Ti–Co–Si–N or Ti–Co–N alloy and the substrate at 650–700°C. The effect of a TiN, Ti, or CoSi2thin layer at the alloy–substrate interface on the phase separation is investigated.  相似文献   

17.
In this work copper aluminum substituted cobalt nanocrystalline spinel ferrites having general formula Co1−xCuxFe2−x AlxO4, with 0.0≤x≤0.8 have been synthesized by using a co-precipitation method. The Cu–Al substituted samples were annealed at 600 °C and characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM) and vibrating sample magnetometer (VSM). XRD analysis confirmed a single phase spinel structure and the crystalline size calculated using Scherrer׳s formula found to be in the range of 14−24 nm. This crystalline size is small enough to achieve the suitable signal to noise ratio in the high density recording media. The FTIR spectra reveal two prominent frequency bands in the wave number range 350–600 cm−1, which confirm the cubic spinel structure and completion of chemical reaction. Magnetic studies reveal that the coercivity (Hc) attains a maximum value of 1142 Oe at 14 nm. The increasing trend of magnetic parameters (coercivity and retentivity) is consistent with crystallinity. The role played by the Cu–Al ions in improving the structural and magnetic properties are analyzed and understood. The optimized magnetic parameters suggest that the material with composition Co0.6Cu0.4Fe1.6Al0.4O4 may have a potential application for high density recording media. Our simple, economic and environmental friendly preparation method may contribute towards the controlled growth of high quality ferrite nanopowder, potential candidates for recording.  相似文献   

18.
The interfacial reactions of Ni with Sn-Zn alloys with 1 wt.% to 9 wt.% Zn at 250°C were examined. The Zn content greatly affected the intermetallic compounds formed and microstructural evolution. A continuous Ni5Zn21 layer was formed for the Sn-Zn/Ni couples with a Zn content higher than 5 wt.%. A stable reaction layer existed at the interface and grew thicker with time. When decreasing to 3 wt.% Zn, two thin reaction layers of Ni5Zn21 and (Ni,Zn)3Sn4 were simultaneously observed initially, and then an extremely large faceted Ni5Zn21 phase was formed near the boundary between the Ni5Zn21 layer and the solder. Furthermore, when the Zn content was lower than 2 wt.%, the dominant phase changed to (Ni,Zn)3Sn4. The Zn concentration of the solder gradually decreased with reaction, and thus the interfacial stability was reduced. Subsequently, a large amount of (Ni,Zn)3Sn4 grains were dispersed into the molten solder, and finally the reaction product at the interface changed to Ni3Sn4.  相似文献   

19.
The purpose of this work is to analyze the electrical properties of the metal–semiconductor contact (MSC) in the framework of the theory of complex systems. The effect of inhomogeneity of the different microstructures: polycrystalline, monocrystalline, amorphous metal–semiconductor contact surface is investigated, considering a Schottky diode (SD) as a parallel connection of numerous subdiodes. It has been shown that the polycrystallinity of the metal translates a homogeneous contact into a complex system, which consists of parallel connected numerous elementary contacts having different properties and parameters.  相似文献   

20.
Semiconductors - The effect of uniaxial elastic deformation on the current–voltage characteristic of surface–barrier Sb–p-Si〈Mn〉–Au diodes is studied. It is...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号