首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In situ polymerization of liquid electrolytes is currently the most feasible way for constructing solid-state batteries, which, however, is affected by various interfering factors of reactions and so the electrochemical performance of cells. To disclose the effects from polymerization conditions, two types of generally used in situ polymerizing reactions of ring-opening polymerization (ROP) and double bond radical polymerization (DBRP) were investigated on the aspects of monomer conversion and electrochemical properties (Li+-conductivity and interfacial stability). The ROP generated poly-ester and poly-carbonate show a high monomer conversion of ≈90 %, but suffer a poor Li+-conductivity of lower than 2×10−5 S cm−1 at room temperature (RT). Additionally, the terminal alkoxy anion derived from the ROP is not resistant to high-voltage cathodes. While, the DBRP produced poly-VEC(vinyl ethylene carbonate) and poly-VC(vinylene carbonate) show lower monomer conversions of 50–80 %, delivering relatively higher Li+-conductivities of 2×10−4 S cm−1 at RT. Compared two polymerizing reactions and four monomers, the VEC-based F-containing copolymer possesses advantages in Li+-conductivity and antioxidant capacity, which also shows simultaneous stability towards Li-metal with the help of LiF-based passivating layer, allowing a long-term stable cycling of high-voltage quasi solid-state cells.  相似文献   

2.
The limited triple-phase boundaries (TPBs) in solid-state cathodes (SSCs) and high resistance imposed by solid electrolytes (SEs) make the achievement of high-performance all-solid-state lithium-oxygen (ASS Li-O2) batteries a challenge. Herein, an adjustable-porosity plastic crystal electrolyte (PCE) has been fabricated by employing a thermally induced phase separation (TIPS) technique to overcome the above tricky issues. The SSC produced through the in-situ introduction of the porous PCE on the surface of the active material, facilitates the simultaneous transfer of Li+/e, as well as ensures fast flow of O2, forming continuous and abundant TPBs. The high Li+ conductivity, softness, and adhesion of the dense PCE significantly reduce the battery resistance to 115 Ω. As a result, the ASS Li-O2 battery based on this adjustable-porosity PCE exhibits superior performances with high specific capacity (5963 mAh g−1), good rate capability, and stable cycling life up to 130 cycles at 32 °C. This novel design and exciting results could open a new avenue for ASS Li-O2 batteries.  相似文献   

3.
Without excess Li, anode-free Li-metal batteries (AFLMBs) have been proposed as the most likely solution to realizing highly-safe and cost-effective Li-metal batteries. Nevertheless, short cyclic life puzzles conventional AFLMBs due to anodic dead Li accumulation with a local current concentration induced by irreversible electrolyte depletion, insufficient active Li reservoir and slow Li+ transfer at the solid electrolyte interphase (SEI). Herein, SrI2 is introduced into carbon paper (CP) current collector to effectively suppress dead Li through synergistic mechanisms including reversible I/I3 redox reaction to reactivate dead Li, dielectric SEI surface with SrF2 and LiF to prevent electrolyte decomposition and highly ionic conductive (3.488 mS cm−1) inner layer of SEI with abundant LiI to enable efficient Li+ transfer inside. With the SrI2-modified current collector, the NCM532/CP cell delivers unprecedented cyclic performances with a capacity of 129.2 mAh g−1 after 200 cycles.  相似文献   

4.
Lithium metal batteries (LMBs) have attracted extensive attention owing to their high energy density. However, the uncontrolled volume changes and serious dendrite growth of the Li metal anode have hindered their commercialization. Herein, a three-dimensional Cu foam decorated with Au nanoparticles and conformal graphene layer was designed to tune the Li plating/stripping behaviors. The 3D−Cu conductive host anchored by lithiophilic Au nanoparticles can effectively alleviate the volume expansion caused by the continuous plating/stripping of Li and reduce the nucleation energy barrier. Notably, the conductive graphene not only facilitates the transfer of electrons, but also acts as an ionic rectifier, thereby avoiding the aggregation of local current density and Li+ ions around Au nanoparticles and enabling the uniform Li+ flux. As a result, the G−Au@3D−Cu/Li anode ensures the non-dendritic and homogeneous Li+ plating/stripping. Electrochemical results show that the symmetric G−Au@3D−Cu/Li cell delivers a low voltage hysteresis of 110 mV after 1000 h at 1 mA cm−2. Matched with a layered LiNi0.6Co0.2Mn0.2O2 cathode, the NCM622||G−Au@3D−Cu/Li full cell exhibits a long cycle life of 2000 cycles and an ultra-low capacity decay rate (0.01 % per cycle).  相似文献   

5.
High-voltage lithium metal batteries (LMBs) pose severe challenges for the matching of electrolytes with aggressive electrodes, especially at low temperatures. Here, we report a rational modification of the Li+ solvation structure to extend the voltage and temperature operating ranges of conventional electrolytes. Ion-ion and ion-dipole interactions as well as the electrochemical window of solvents were tailored to improve oxidation stability and de-solvation kinetics of the electrolyte. Meanwhile, robust and elastic B and F-rich interphases are formed on both electrodes. Such optimization enables Li||LiNi0.5Mn1.5O4 cells (90.2 % retention after 400 cycles) and Li||LiNi0.6Co0.2Mn0.2O2 (NCM622) cells (74.0 % retention after 200 cycles) to cycle stably at an ultra-high voltage of 4.9 V. Moreover, NCM622 cells deliver a considerable capacity of 143.5 mAh g−1 at −20 °C, showing great potential for practical uses. The proposed strategy sheds light on further optimization for high-voltage LMBs.  相似文献   

6.
Lithium metal batteries (LMBs) comprising Li metal anode and high-voltage nickel-rich cathode could potentially realize high capacity and power density. However, suitable electrolytes to tolerate the oxidation on the cathode at high cut-off voltage are urgently needed. Herein, we present an armor-like inorganic-rich cathode electrolyte interphase (CEI) strategy for exploring oxidation-resistant electrolytes for sustaining 4.8 V Li||LiNi0.6Co0.2Mn0.2O2 (NCM622) batteries with pentafluorophenylboronic acid (PFPBA) as the additive. In such CEI, the armored lithium borate surrounded by CEI up-layer represses the dissolution of inner CEI moieties and also improves the Li+ conductivity of CEI while abundant LiF is distributed over whole CEI to enhance the mechanical stability and Li+ conductivity compared with polymer moieties. With such robust Li+ conductive CEI, the Li||NCM622 battery delivered excellent stability at 4.6 V cut-off voltage with 91.2 % capacity retention after 400 cycles. The excellent cycling performance was also obtained even at 4.8 V cut-off voltage.  相似文献   

7.
The limited triple‐phase boundaries (TPBs) in solid‐state cathodes (SSCs) and high resistance imposed by solid electrolytes (SEs) make the achievement of high‐performance all‐solid‐state lithium‐oxygen (ASS Li‐O2) batteries a challenge. Herein, an adjustable‐porosity plastic crystal electrolyte (PCE) has been fabricated by employing a thermally induced phase separation (TIPS) technique to overcome the above tricky issues. The SSC produced through the in‐situ introduction of the porous PCE on the surface of the active material, facilitates the simultaneous transfer of Li+/e?, as well as ensures fast flow of O2, forming continuous and abundant TPBs. The high Li+ conductivity, softness, and adhesion of the dense PCE significantly reduce the battery resistance to 115 Ω. As a result, the ASS Li‐O2 battery based on this adjustable‐porosity PCE exhibits superior performances with high specific capacity (5963 mAh g?1), good rate capability, and stable cycling life up to 130 cycles at 32 °C. This novel design and exciting results could open a new avenue for ASS Li‐O2 batteries.  相似文献   

8.
Polymer based quasi-solid-state electrolyte (QSE) has attracted great attention due to its assurance for high safety of rechargeable batteries including lithium metal batteries (LMB). However, it faces the issue of low ionic conductivity of electrolyte and solid-electrolyte-interface (SEI) layer between QSE and lithium anode. Herein, we firstly demonstrate that the ordered and fast transport of lithium ion (Li+) can be realized in QSE. Due to the higher coordination strength of Li+ on tertiary amine (−NR3) group of polymer network than that on carbonyl (−C=O) group of ester solvent, Li+ can diffuse orderly and quickly on −NR3 of polymer, significantly increasing the ionic conductivity of QSE to 3.69 mS cm−1. Moreover, −NR3 of polymer can induce in situ and uniform generation of Li3N and LiNxOy in SEI. As a result, the Li||NCM811 batteries (50 μm Li foil) with this QSE show an excellent stability of 220 cycles at ≈1.5 mA cm−2, 5 times to those with conventional QSE. LMBs with LiFePO4 can stably run for ≈8300 h. This work demonstrates an attractive concept for improving ionic conductivity of QSE, and also provides an important step for developing advanced LMB with high cycle stability and safety.  相似文献   

9.
A new phosphonate-based anionic bimetallic organic framework, with the general formula of A4−Zn−DOBDP (wherein A is Li+ or Na+, and DOBDP6− is the 2,5-dioxido-1,4-benzenediphosphate ligand) is prepared and characterized for energy storage applications. With four alkali cations per formula unit, the A4−Zn−DOBDP MOF is found to be the first example of non-solvated cation conducting MOF with measured conductivities of 5.4×10−8 S cm−1 and 3.4×10−8 S cm−1 for Li4- and Na4- phases, indicating phase and composition effects of Li+ and Na+ shuttling through the channels. Three orders of magnitude increase in ionic conductivity is further attained upon solvation with propylene carbonate, placing this system among the best MOF ionic conductors at room temperature. As positive electrode material, Li4−Zn−DOBDP delivers a specific capacity of 140 mAh g−1 at a high average discharge potential of 3.2 V (vs. Li+/Li) with 90 % of capacity retention over 100 cycles. The significance of this research extends from the development of a new family of electroactive phosphonate-based MOFs with inherent ionic conductivity and reversible cation storage, to providing elementary insights into the development of highly sought yet still evasive MOFs with mixed-ion and electron conduction for energy storage applications.  相似文献   

10.
《中国化学快报》2023,34(11):108245
Li-ion batteries with solid polymer electrolytes (SPEs) are safer than conventional liquid electrolytes due to the absence of highly flammable liquid electrolytes. However, their performance is limited by the poor Li+ transport in SPEs at room temperature. Anion-containing polymer-chains incorporated SPEs (ASPEs) are therefore developed to enhance Li+ diffusion kinetics. Herein, we propose a novel and feasible strategy to incorporate the anion-containing polymer-chains, such as lithiated perfluorinated sulfonic acid (PFSA), into polyvinylidene fluoride (PVDF) polymer-based SPEs. The immobile anion groups from the PFSA-chains impede the migration of mobile anion groups dissociated from the Li salt. The transference number is thus raised from ∼0.3 to 0.52 with the introduction of anion-containing polymer-chains into SPEs. The electrostatic repulsion among anion-containing chains also reduces the close chain stacking and brings 159% increase in the ionic conductivity to 0.83 × 10−3 S/cm at 30 °C in contrast with the pure PVDF-based SPE. In addition, LiFeO4/Li batteries with ASPEs exhibit 55% capacity boost at 0.5 C in contrast to the capacity of batteries with pure-PVDF SPEs, and also offer more than 1000 charge/discharge cycles. Our research findings potentially offer a facile strategy to design thermal stable SPEs with superior Li+ transport behaviors towards developing high-performance SPEs-based batteries.  相似文献   

11.
Li−O2 batteries with bis(trifluoromethanesulfonyl)imide-based ionic liquid (TFSI-IL) electrolyte are promising because TFSI-IL can stabilize O2 to lower charge overpotential. However, slow Li+ transport in TFSI-IL electrolyte causes inferior Li deposition. Here we optimize weak solvating molecule (anisole) to generate anisole-doped ionic aggregate in TFSI-IL electrolyte. Such unique solvation environment can realize not only high Li+ transport parameters but also anion-derived solid electrolyte interface (SEI). Thus, fast Li+ transport is achieved in electrolyte bulk and SEI simultaneously, leading to robust Li deposition with high rate capability (3 mA cm−2) and long cycle life (2000 h at 0.2 mA cm−2). Moreover, Li−O2 batteries show good cycling stability (a small overpotential increase of 0.16 V after 120 cycles) and high rate capability (1 A g−1). This work provides an effective electrolyte design principle to realize stable Li deposition and high-performance Li−O2 batteries.  相似文献   

12.
Truly cationic metallocenes with the parent cyclopentadienyl ligand are so far unknown for the Group 14 elements. Herein we report on an almost “naked” [SnCp]+ cation with the weakly coordinating [Al{OC(CF3)3}4] and [{(F3C)3CO}3Al−F−Al{OC(CF3)3}3] anions. [SnCp][Al{OC(CF3)3}4] was used to prepare the first main‐group quadruple‐decker cation [Sn3Cp4]2+ again as the [Al{OC(CF3)3}4] salt. Additionally, the toluene adduct [CpSn(C7H8)][Al{OC(CF3)3}4] was obtained.  相似文献   

13.
Truly cationic metallocenes with the parent cyclopentadienyl ligand are so far unknown for the Group 14 elements. Herein we report on an almost “naked” [SnCp]+ cation with the weakly coordinating [Al{OC(CF3)3}4] and [{(F3C)3CO}3Al−F−Al{OC(CF3)3}3] anions. [SnCp][Al{OC(CF3)3}4] was used to prepare the first main‐group quadruple‐decker cation [Sn3Cp4]2+ again as the [Al{OC(CF3)3}4] salt. Additionally, the toluene adduct [CpSn(C7H8)][Al{OC(CF3)3}4] was obtained.  相似文献   

14.
The two major issues confronting the commercialization of rechargeable lithium-sulfur (Li−S) batteries are the sluggish kinetics of the sulfur electrochemical reactions on the cathode and inadequate lithium deposition/stripping reversibility on the anode. They are commonly mitigated with additives designed specifically for the anode and the cathode individually. Here, we report the use of a single cathode modifier, In2Se3, which can effectively catalyse the polysulfide reactions on the cathode, and also improve the reversibility of Li deposition and removal on the anode through a LiInS2/LiInSe2 containing solid electrolyte interface formed in situ by the Se and In ions dissolved in the electrolyte. The amounts of dissolved Se and In are small relative to the amount of In2Se3 administered. The benefits of using this single modification approach were verified in Li-metal anode-free Li−S batteries with a Li2S loading of 4 mg cm−2 and a low electrolyte/Li2S ratio of 7.5 μL mg−1. The resulting battery showed 60 % capacity retention after 160 cycles at the 0.2 C rate and an average Coulombic efficiency of 98.27 %, comparing very well with recent studies using separate electrode modifiers.  相似文献   

15.
Understanding and controlling the kinetics of O2 reduction in the presence of Li+‐containing aprotic solvents, to either Li+‐O2 by one‐electron reduction or Li2O2 by two‐electron reduction, is instrumental to enhance the discharge voltage and capacity of aprotic Li‐O2 batteries. Standard potentials of O2/Li+‐O2 and O2/O2 were experimentally measured and computed using a mixed cluster‐continuum model of ion solvation. Increasing combined solvation of Li+ and O2 was found to lower the coupling of Li+‐O2 and the difference between O2/Li+‐O2 and O2/O2 potentials. The solvation energy of Li+ trended with donor number (DN), and varied greater than that of O2 ions, which correlated with acceptor number (AN), explaining a previously reported correlation between Li+‐O2 solubility and DN. These results highlight the importance of the interplay between ion–solvent and ion–ion interactions for manipulating the energetics of intermediate species produced in aprotic metal–oxygen batteries.  相似文献   

16.
Reactions of Li+ [(η5-C5H5)Re(NO)(PPh3)] with 2- and 4-chloroquinoline or 1-chloroisoquinoline give the corresponding σ quinolinyl and isoquinolinyl complexes 3 , 6 , and 8 . With 3 and 8 there is further protonation to yield HCl adducts, but additions of KH give the free bases. Treatment of 3 with HBF4⋅OEt2 or H(OEt2)2+ BArf gives the quinolinium salts [(η5-C5H5)Re(NO)(PPh3)(C(NH)C(CH)4C (CH)(CH))]+ X ( 3-H + X; X=BF4/BArf, 94–98 %). Addition of CF3SO3CH3 to 3 , 6 , or 8 affords the corresponding N-methyl quinolinium salts. In the case of [(η5-C5H5)Re(NO)(PPh3)(C(NCH3)C(CH)4C (CH)(CH))]+ CF3SO3 ( 3-CH3 + CF3SO3), addition of CH3Li gives the dihydroquinolinium complex (SReRC,RReSC)-[(η5-C5H5)Re(NO)(PPh3)(C(NCH3)C(CH)4C (CHCH3)(CH2))]+ CF3SO3 ((SReRC,RReSC)- 5 + CF3SO3, 76 %) in diastereomerically pure form. Crystal structures of 3-H + BArf, 3-CH3 + CF3SO3, (SReRC, RReSC)- 5 + Cl, and 6-CH3 + CF3SO3 show that the quinolinium ligands adopt Re⋅⋅⋅ C conformations that maximize overlap of their acceptor orbitals with the rhenium fragment HOMO, minimize steric interactions with the bulky PPh3 ligand, and promote various π interactions. NMR experiments establish the Brønsted basicity order 3 > 8 > 6 , with Ka(BH+) values >10 orders of magnitude greater than the parent heterocycles, although they remain less active nucleophilic catalysts in the reactions tested. DFT calculations provide additional insights regarding Re⋅⋅⋅ C bonding and conformations, basicities, and the stereochemistry of CH3Li addition.  相似文献   

17.
A fluoroform‐derived borazine CF3 transfer reagent is used to effect rapid nucleophilic reactions in the absence of additives, within minutes at 25 °C. Inorganic electrophiles spanning seven groups of the periodic table can be trifluoromethylated in high yield, including transition metals used for catalytic trifluoromethylation. Organic electrophiles included (hetero)arenes, enabling C−H and C−X trifluoromethylation reactions. Mechanistic analysis supports a dissociative mechanism for CF3 transfer, and cation modification afforded a reagent with enhanced stability.  相似文献   

18.
《Chemical physics letters》1986,125(2):165-169
The lowest six vibrational hot bands of CF+ have been measured in a helium/C2F6 discharge by velocity modulation laser spectroscopy. A total of 56 transitions has been fitted to Dunham expansion for v = 0–7, yielding the parameters: ωe = 1792.6654(18) cm−1Be = 1.7204176(75) cm−1, Y20, = −13.22968(54) cm−1, and D0 = 62086(30) cm−1. The rotational temperature of CF+ in the plasma is near 650 K and the vibrational temperature is approximately 5200 K.  相似文献   

19.
Ab initio calculations have been performed to examine the properties of the protonated fluoroform cation (CF3H2+). These calculations show that the global minimum for CF3H2+ is [CF2H … FH]+ among three possible configurational isomers. This isomer is suggested to be an ion-dipole complex between CF2H+ and FH. The barrier to internal rotation of the bond between carbon of CF2H+ and fluorine of HF is calculated as 0.96 kcal mol−1 at the MP2/6-31G(d,p) level of theory. The heat of formation of CF3H2+ at 298.15 K is estimated to be 60.6 kcal mol−1 from the G2 calculation.  相似文献   

20.
Solid-state electrolytes (SSEs) with high ionic conductivity and superior stability are considered to be a key technology for the safe operation of solid-state lithium batteries. However, current SSEs are incapable of meeting the requirements for practical solid-state lithium batteries. Here we report a general strategy for achieving high-performance SSEs by engineering polymers of intrinsic microporosity (PIMs). Taking advantage of the interconnected ion pathways generated from the ionizable groups, high ionic conductivity (1.06×10−3 S cm−1 at 25 °C) is achieved for the PIMs-based SSEs. The mechanically strong (50.0 MPa) and non-flammable SSEs combine the two superiorities of outstanding Li+ conductivity and electrochemical stability, which can restrain the dendrite growth and prevent Li symmetric batteries from short-circuiting even after more than 2200 h cycling. Benefiting from the rational design of SSEs, PIMs-based SSEs Li-metal batteries can achieve good cycling performance and superior feasibility in a series of withstand abuse tests including bending, cutting, and penetration. Moreover, the PIMs-based SSEs endow high specific capacity (11307 mAh g−1) and long-term discharge/charge stability (247 cycles) for solid-state Li−O2 batteries. The PIMs-based SSEs present a powerful strategy for enabling safe operation of high-energy solid-state batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号